Yajun Lu, Yae Zhao, Li Hu, Wanyu Zhang, Yunyun Xie, Shi Cheng, Bin Zheng, Qianfeng Xia
{"title":"利用多基因DNA条形码标记揭示海南岛热带地区野蜱(蜱螨:伊蚊科)广泛的遗传多样性。","authors":"Yajun Lu, Yae Zhao, Li Hu, Wanyu Zhang, Yunyun Xie, Shi Cheng, Bin Zheng, Qianfeng Xia","doi":"10.1159/000531734","DOIUrl":null,"url":null,"abstract":"<p><p>Ticks are hematophagous arthropods and obligate ectoparasites of humans and other animals. This study focused on the molecular discrimination of ticks in the tropical environment of Hainan according to multi-gene DNA barcode markers with the expectation of accurately distinguishing species. A total of 420 ticks, including 49 adult ticks, 203 nymphal ticks, and 168 larval ticks, were collected in the field, and the 49 adult ticks were identified as Rhipicephalus turanicus, Dermacentor marginatus, and Haemaphysalis longicornis. The mitochondrial 16S rRNA, ribosomal 28S rRNA D2, and ribosomal internal transcribed spacer 2 (ITS2) regions were used as DNA barcode markers to discriminate species. According to basic local alignment search tool analysis against the GenBank database, 16S rRNA positively identified ticks in the Rhipicephalus, Dermacentor, and Haemaphysalis genera; the 28S rRNA D2 region identified ticks in the Rhipicephalus and Dermacentor genera; and ITS2 identified ticks as D. marginatus. Pairwise sequence comparisons based on these three regions were visualized with a Sequence Demarcation Tool matrix. Substitution saturation tests using data analysis and molecular biology and evolution revealed little substitution saturation (Iss < Iss.c, p < 0.05) in the 16S rRNA region for the Haemaphysalis genus; 28S rRNA D2 region for the Rhipicephalus, Dermacentor, and Haemaphysalis genera; and ITS2 region for the Rhipicephalus and Dermacentor genera. Distinctive sequences for which it is difficult to obtain good matches with the sequences available in GenBank exist in the ticks of Hainan. Future studies should obtain complementary sequences to refine and update the database for the molecular characterization of ticks.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of Multi-Gene DNA Barcode Markers to Reveal the Broad Genetic Diversity of Field Ticks (Acari: Ixodidae) in a Tropical Environment of Hainan Island, China.\",\"authors\":\"Yajun Lu, Yae Zhao, Li Hu, Wanyu Zhang, Yunyun Xie, Shi Cheng, Bin Zheng, Qianfeng Xia\",\"doi\":\"10.1159/000531734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ticks are hematophagous arthropods and obligate ectoparasites of humans and other animals. This study focused on the molecular discrimination of ticks in the tropical environment of Hainan according to multi-gene DNA barcode markers with the expectation of accurately distinguishing species. A total of 420 ticks, including 49 adult ticks, 203 nymphal ticks, and 168 larval ticks, were collected in the field, and the 49 adult ticks were identified as Rhipicephalus turanicus, Dermacentor marginatus, and Haemaphysalis longicornis. The mitochondrial 16S rRNA, ribosomal 28S rRNA D2, and ribosomal internal transcribed spacer 2 (ITS2) regions were used as DNA barcode markers to discriminate species. According to basic local alignment search tool analysis against the GenBank database, 16S rRNA positively identified ticks in the Rhipicephalus, Dermacentor, and Haemaphysalis genera; the 28S rRNA D2 region identified ticks in the Rhipicephalus and Dermacentor genera; and ITS2 identified ticks as D. marginatus. Pairwise sequence comparisons based on these three regions were visualized with a Sequence Demarcation Tool matrix. Substitution saturation tests using data analysis and molecular biology and evolution revealed little substitution saturation (Iss < Iss.c, p < 0.05) in the 16S rRNA region for the Haemaphysalis genus; 28S rRNA D2 region for the Rhipicephalus, Dermacentor, and Haemaphysalis genera; and ITS2 region for the Rhipicephalus and Dermacentor genera. Distinctive sequences for which it is difficult to obtain good matches with the sequences available in GenBank exist in the ticks of Hainan. Future studies should obtain complementary sequences to refine and update the database for the molecular characterization of ticks.</p>\",\"PeriodicalId\":11206,\"journal\":{\"name\":\"Cytogenetic and Genome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytogenetic and Genome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000531734\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000531734","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exploration of Multi-Gene DNA Barcode Markers to Reveal the Broad Genetic Diversity of Field Ticks (Acari: Ixodidae) in a Tropical Environment of Hainan Island, China.
Ticks are hematophagous arthropods and obligate ectoparasites of humans and other animals. This study focused on the molecular discrimination of ticks in the tropical environment of Hainan according to multi-gene DNA barcode markers with the expectation of accurately distinguishing species. A total of 420 ticks, including 49 adult ticks, 203 nymphal ticks, and 168 larval ticks, were collected in the field, and the 49 adult ticks were identified as Rhipicephalus turanicus, Dermacentor marginatus, and Haemaphysalis longicornis. The mitochondrial 16S rRNA, ribosomal 28S rRNA D2, and ribosomal internal transcribed spacer 2 (ITS2) regions were used as DNA barcode markers to discriminate species. According to basic local alignment search tool analysis against the GenBank database, 16S rRNA positively identified ticks in the Rhipicephalus, Dermacentor, and Haemaphysalis genera; the 28S rRNA D2 region identified ticks in the Rhipicephalus and Dermacentor genera; and ITS2 identified ticks as D. marginatus. Pairwise sequence comparisons based on these three regions were visualized with a Sequence Demarcation Tool matrix. Substitution saturation tests using data analysis and molecular biology and evolution revealed little substitution saturation (Iss < Iss.c, p < 0.05) in the 16S rRNA region for the Haemaphysalis genus; 28S rRNA D2 region for the Rhipicephalus, Dermacentor, and Haemaphysalis genera; and ITS2 region for the Rhipicephalus and Dermacentor genera. Distinctive sequences for which it is difficult to obtain good matches with the sequences available in GenBank exist in the ticks of Hainan. Future studies should obtain complementary sequences to refine and update the database for the molecular characterization of ticks.
期刊介绍:
During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.