果蝇胚胎的采集、固定和抗体染色。

Thomas Kidd, Timothy Evans
{"title":"果蝇胚胎的采集、固定和抗体染色。","authors":"Thomas Kidd, Timothy Evans","doi":"10.1101/pdb.prot108116","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Drosophila</i> embryonic central nervous system has been used for decades as a model for understanding the genetic regulation of axon guidance and other aspects of neural development. Foundational studies using antibody staining to examine the embryonic ventral nerve cord in wild-type and mutant animals led to the discovery of evolutionarily conserved genes that regulate fundamental aspects of axon guidance, including midline crossing of axons. The development of the regular, segmentally repeating structure of axon pathways in the ventral nerve cord can illustrate basic principles of axon guidance to beginning students and can also be used by expert researchers to characterize new mutants, detect genetic interactions between known genes, and precisely quantify variations in gene function in engineered mutant lines. Here, we describe a protocol for collecting and fixing <i>Drosophila</i> embryos and visualizing axon pathways in the embryonic ventral nerve cord using immunofluorescence or immunohistochemical staining methods. As embryogenesis in <i>Drosophila</i> takes ∼24 h to complete, a 1-d collection yields embryos representing all stages of development from newly fertilized through ready-to-hatch larvae, allowing investigation of multiple developmental events within a single batch of collected embryos. The methods described in this protocol should be accessible to introductory laboratory courses as well as seasoned investigators in established research laboratories.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108116"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collection, Fixation, and Antibody Staining of <i>Drosophila</i> Embryos.\",\"authors\":\"Thomas Kidd, Timothy Evans\",\"doi\":\"10.1101/pdb.prot108116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Drosophila</i> embryonic central nervous system has been used for decades as a model for understanding the genetic regulation of axon guidance and other aspects of neural development. Foundational studies using antibody staining to examine the embryonic ventral nerve cord in wild-type and mutant animals led to the discovery of evolutionarily conserved genes that regulate fundamental aspects of axon guidance, including midline crossing of axons. The development of the regular, segmentally repeating structure of axon pathways in the ventral nerve cord can illustrate basic principles of axon guidance to beginning students and can also be used by expert researchers to characterize new mutants, detect genetic interactions between known genes, and precisely quantify variations in gene function in engineered mutant lines. Here, we describe a protocol for collecting and fixing <i>Drosophila</i> embryos and visualizing axon pathways in the embryonic ventral nerve cord using immunofluorescence or immunohistochemical staining methods. As embryogenesis in <i>Drosophila</i> takes ∼24 h to complete, a 1-d collection yields embryos representing all stages of development from newly fertilized through ready-to-hatch larvae, allowing investigation of multiple developmental events within a single batch of collected embryos. The methods described in this protocol should be accessible to introductory laboratory courses as well as seasoned investigators in established research laboratories.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"pdb.prot108116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.prot108116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,果蝇胚胎中枢神经系统一直被用作了解轴突导向遗传调控和神经发育其他方面的模型。利用抗体染色法检查野生型和突变型动物胚胎腹侧神经索的基础研究,发现了调控轴突导向基本方面(包括轴突中线交叉)的进化保守基因。腹侧神经索轴突通路的规则、节段重复结构的形成可以向初学者说明轴突导向的基本原理,也可以被专家研究人员用于鉴定新的突变体、检测已知基因之间的遗传相互作用以及精确量化工程突变株中基因功能的变化。在这里,我们介绍了一种收集和固定果蝇胚胎并使用免疫荧光或免疫组化染色方法观察胚胎腹侧神经索轴突通路的方法。由于果蝇的胚胎发生需要 24 小时才能完成,因此收集 1 天的胚胎可代表从刚受精到孵化幼虫的所有发育阶段,从而可在收集的一批胚胎中研究多个发育事件。无论是入门实验课程还是成熟研究实验室中经验丰富的研究人员,都可以使用本方案中描述的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collection, Fixation, and Antibody Staining of Drosophila Embryos.

The Drosophila embryonic central nervous system has been used for decades as a model for understanding the genetic regulation of axon guidance and other aspects of neural development. Foundational studies using antibody staining to examine the embryonic ventral nerve cord in wild-type and mutant animals led to the discovery of evolutionarily conserved genes that regulate fundamental aspects of axon guidance, including midline crossing of axons. The development of the regular, segmentally repeating structure of axon pathways in the ventral nerve cord can illustrate basic principles of axon guidance to beginning students and can also be used by expert researchers to characterize new mutants, detect genetic interactions between known genes, and precisely quantify variations in gene function in engineered mutant lines. Here, we describe a protocol for collecting and fixing Drosophila embryos and visualizing axon pathways in the embryonic ventral nerve cord using immunofluorescence or immunohistochemical staining methods. As embryogenesis in Drosophila takes ∼24 h to complete, a 1-d collection yields embryos representing all stages of development from newly fertilized through ready-to-hatch larvae, allowing investigation of multiple developmental events within a single batch of collected embryos. The methods described in this protocol should be accessible to introductory laboratory courses as well as seasoned investigators in established research laboratories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
期刊最新文献
Optimized Methods for Applying and Assessing Heat, Drought, and Nutrient Stress of Maize Seedlings in Controlled Environment Experiments. Cloning of Affibody Libraries for Display Methods. Engineering of Affibody Molecules. Selection of Affibody Molecules Using Staphylococcal Display. Selection of Affibody Molecules Using Phage Display.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1