{"title":"一项预测脊髓性肌萎缩症候选二氨基喹唑啉衍生物的存活运动神经元启动子活性的QSAR研究。","authors":"G Sabuncu Gürses, S S Erdem, M T Saçan","doi":"10.1080/1062936X.2023.2200975","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal Muscular Atrophy is a genetic neuromuscular disease that leads to muscle weakness and atrophy and it is characterized by the loss of α-motor neurons in the spinal cord's anterior horn cells. The disease appears due to low levels of the survival motor neuron protein. There are continuing clinical trials for the treatment of Spinal Muscular Atrophy. Quinazoline-based compounds are promising since they were tested on fibroblasts derived from the patients and found to increase the survival motor neuron protein levels. In this study, using multiple linear regression, we generated robust and valid quantitative structure- activity relationship models to predict the survival motor neuron-2 promoter activity of the new candidate compounds using the experimental survival motor neuron-2 promoter activity values of 2,4-diaminoquinazoline derivatives taken from the literature. The novel compounds designed by combining the pyrido[1,2-α]pyrimidin-4-one moeity of the known drug Risdiplam with that of 2,4 - diaminoquinazoline scaffold were predicted to exhibit strong promoter activities.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"34 3","pages":"247-266"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A QSAR study to predict the survival motor neuron promoter activity of candidate diaminoquinazoline derivatives for the potential treatment of spinal muscular atrophy.\",\"authors\":\"G Sabuncu Gürses, S S Erdem, M T Saçan\",\"doi\":\"10.1080/1062936X.2023.2200975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal Muscular Atrophy is a genetic neuromuscular disease that leads to muscle weakness and atrophy and it is characterized by the loss of α-motor neurons in the spinal cord's anterior horn cells. The disease appears due to low levels of the survival motor neuron protein. There are continuing clinical trials for the treatment of Spinal Muscular Atrophy. Quinazoline-based compounds are promising since they were tested on fibroblasts derived from the patients and found to increase the survival motor neuron protein levels. In this study, using multiple linear regression, we generated robust and valid quantitative structure- activity relationship models to predict the survival motor neuron-2 promoter activity of the new candidate compounds using the experimental survival motor neuron-2 promoter activity values of 2,4-diaminoquinazoline derivatives taken from the literature. The novel compounds designed by combining the pyrido[1,2-α]pyrimidin-4-one moeity of the known drug Risdiplam with that of 2,4 - diaminoquinazoline scaffold were predicted to exhibit strong promoter activities.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\"34 3\",\"pages\":\"247-266\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2023.2200975\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2200975","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A QSAR study to predict the survival motor neuron promoter activity of candidate diaminoquinazoline derivatives for the potential treatment of spinal muscular atrophy.
Spinal Muscular Atrophy is a genetic neuromuscular disease that leads to muscle weakness and atrophy and it is characterized by the loss of α-motor neurons in the spinal cord's anterior horn cells. The disease appears due to low levels of the survival motor neuron protein. There are continuing clinical trials for the treatment of Spinal Muscular Atrophy. Quinazoline-based compounds are promising since they were tested on fibroblasts derived from the patients and found to increase the survival motor neuron protein levels. In this study, using multiple linear regression, we generated robust and valid quantitative structure- activity relationship models to predict the survival motor neuron-2 promoter activity of the new candidate compounds using the experimental survival motor neuron-2 promoter activity values of 2,4-diaminoquinazoline derivatives taken from the literature. The novel compounds designed by combining the pyrido[1,2-α]pyrimidin-4-one moeity of the known drug Risdiplam with that of 2,4 - diaminoquinazoline scaffold were predicted to exhibit strong promoter activities.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.