Tyler J S Smith, Alexander P Keil, Jessie P Buckley
{"title":"使用观察数据估计干预对早期生活环境暴露的因果影响。","authors":"Tyler J S Smith, Alexander P Keil, Jessie P Buckley","doi":"10.1007/s40572-022-00388-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>We discuss how epidemiologic studies have used observational data to estimate the effects of potential interventions on early-life environmental exposures. We summarize the value of posing questions about interventions, how a group of techniques known as \"g-methods\" can provide advantages for estimating intervention effects, and how investigators have grappled with the strong assumptions required for causal inference.</p><p><strong>Recent findings: </strong>We identified nine studies that estimated health effects of hypothetical interventions on early-life environmental exposures. Of these, six examined air pollution. Interventions evaluated by these studies included setting exposure levels at a specific value, shifting exposure distributions, and limiting exposure levels to less than a threshold value. Only one study linked exposure contrasts to a specific intervention on an exposure source, however. There is growing interest in estimating intervention effects of early-life environmental exposures, in part because intervention effects are directly related to possible public health actions. Future studies can build on existing work by linking research questions to specific hypothetical interventions that could reduce exposure levels. We discuss how framing questions around interventions can help overcome some of the barriers to causal inference and how advances related to machine learning may strengthen studies by sidestepping the overly restrictive assumptions of parametric regression models. By leveraging advancements in causal inference and exposure science, an intervention framework for environmental epidemiology can guide actionable solutions to improve children's environmental health.</p>","PeriodicalId":10775,"journal":{"name":"Current Environmental Health Reports","volume":"10 1","pages":"12-21"},"PeriodicalIF":7.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Causal Effects of Interventions on Early-life Environmental Exposures Using Observational Data.\",\"authors\":\"Tyler J S Smith, Alexander P Keil, Jessie P Buckley\",\"doi\":\"10.1007/s40572-022-00388-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>We discuss how epidemiologic studies have used observational data to estimate the effects of potential interventions on early-life environmental exposures. We summarize the value of posing questions about interventions, how a group of techniques known as \\\"g-methods\\\" can provide advantages for estimating intervention effects, and how investigators have grappled with the strong assumptions required for causal inference.</p><p><strong>Recent findings: </strong>We identified nine studies that estimated health effects of hypothetical interventions on early-life environmental exposures. Of these, six examined air pollution. Interventions evaluated by these studies included setting exposure levels at a specific value, shifting exposure distributions, and limiting exposure levels to less than a threshold value. Only one study linked exposure contrasts to a specific intervention on an exposure source, however. There is growing interest in estimating intervention effects of early-life environmental exposures, in part because intervention effects are directly related to possible public health actions. Future studies can build on existing work by linking research questions to specific hypothetical interventions that could reduce exposure levels. We discuss how framing questions around interventions can help overcome some of the barriers to causal inference and how advances related to machine learning may strengthen studies by sidestepping the overly restrictive assumptions of parametric regression models. By leveraging advancements in causal inference and exposure science, an intervention framework for environmental epidemiology can guide actionable solutions to improve children's environmental health.</p>\",\"PeriodicalId\":10775,\"journal\":{\"name\":\"Current Environmental Health Reports\",\"volume\":\"10 1\",\"pages\":\"12-21\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Environmental Health Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40572-022-00388-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Environmental Health Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40572-022-00388-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Estimating Causal Effects of Interventions on Early-life Environmental Exposures Using Observational Data.
Purpose of review: We discuss how epidemiologic studies have used observational data to estimate the effects of potential interventions on early-life environmental exposures. We summarize the value of posing questions about interventions, how a group of techniques known as "g-methods" can provide advantages for estimating intervention effects, and how investigators have grappled with the strong assumptions required for causal inference.
Recent findings: We identified nine studies that estimated health effects of hypothetical interventions on early-life environmental exposures. Of these, six examined air pollution. Interventions evaluated by these studies included setting exposure levels at a specific value, shifting exposure distributions, and limiting exposure levels to less than a threshold value. Only one study linked exposure contrasts to a specific intervention on an exposure source, however. There is growing interest in estimating intervention effects of early-life environmental exposures, in part because intervention effects are directly related to possible public health actions. Future studies can build on existing work by linking research questions to specific hypothetical interventions that could reduce exposure levels. We discuss how framing questions around interventions can help overcome some of the barriers to causal inference and how advances related to machine learning may strengthen studies by sidestepping the overly restrictive assumptions of parametric regression models. By leveraging advancements in causal inference and exposure science, an intervention framework for environmental epidemiology can guide actionable solutions to improve children's environmental health.
期刊介绍:
Current Environmental Health Reports provides up-to-date expert reviews in environmental health. The goal is to evaluate and synthesize original research in all disciplines relevant for environmental health sciences, including basic research, clinical research, epidemiology, and environmental policy.