日本温泉嗜热菌φMN1的分离与基因组分析。

IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of General and Applied Microbiology Pub Date : 2023-11-15 Epub Date: 2023-07-07 DOI:10.2323/jgam.2023.06.008
Masatada Tamakoshi, Atsushi Hijikata, Kei Yura, Kenshiro Oshima, Hidehiro Toh, Kaoru Mitsuoka, Tairo Oshima, Yoshitaka Bessho
{"title":"日本温泉嗜热菌φMN1的分离与基因组分析。","authors":"Masatada Tamakoshi, Atsushi Hijikata, Kei Yura, Kenshiro Oshima, Hidehiro Toh, Kaoru Mitsuoka, Tairo Oshima, Yoshitaka Bessho","doi":"10.2323/jgam.2023.06.008","DOIUrl":null,"url":null,"abstract":"<p><p>A Thermus thermophilus lytic phage was isolated from a Japanese hot spring using a type IV pili-deficient strain as an indicator host, and designated as φMN1. Electron microscopic (EM) examination revealed that φMN1 had an icosahedral head and a contractile tail, suggesting that φMN1 belonged to Myoviridae. An EM analysis focused on φMN1 adsorption to the Thermus host cell showed that the receptor molecules for the phage were uniformly distributed on the outer surface of the cells. The circular double-stranded DNA of φMN1 was 76,659 base pairs in length, and the guanine and cytosine content was 61.8%. It was predicted to contain 99 open reading frames, and its putative distal tail fiber protein, which is essential for non-piliated host cell surface receptor recognition, was dissimilar in terms of sequence and length with its counterpart in the type IV pili-dependent φYS40. A phage proteomic tree revealed that φMN1 and φYS40 are in the same cluster, but many genes had low sequence similarities and some seemed to be derived from both mesophilic and thermophilic organisms. The gene organization suggested that φMN1 evolved from a non-Thermus phage through large-scale recombination events of the genes determining the host specificity, followed by gradual evolution by recombination of both the thermophilic and mesophilic DNAs assimilated by the host Thermus cells. This newly isolated phage will provide evolutionary insights into thermophilic phages.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and genomic analysis of a type IV pili-independent Thermus thermophilus phage, φMN1 from a Japanese hot spring.\",\"authors\":\"Masatada Tamakoshi, Atsushi Hijikata, Kei Yura, Kenshiro Oshima, Hidehiro Toh, Kaoru Mitsuoka, Tairo Oshima, Yoshitaka Bessho\",\"doi\":\"10.2323/jgam.2023.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A Thermus thermophilus lytic phage was isolated from a Japanese hot spring using a type IV pili-deficient strain as an indicator host, and designated as φMN1. Electron microscopic (EM) examination revealed that φMN1 had an icosahedral head and a contractile tail, suggesting that φMN1 belonged to Myoviridae. An EM analysis focused on φMN1 adsorption to the Thermus host cell showed that the receptor molecules for the phage were uniformly distributed on the outer surface of the cells. The circular double-stranded DNA of φMN1 was 76,659 base pairs in length, and the guanine and cytosine content was 61.8%. It was predicted to contain 99 open reading frames, and its putative distal tail fiber protein, which is essential for non-piliated host cell surface receptor recognition, was dissimilar in terms of sequence and length with its counterpart in the type IV pili-dependent φYS40. A phage proteomic tree revealed that φMN1 and φYS40 are in the same cluster, but many genes had low sequence similarities and some seemed to be derived from both mesophilic and thermophilic organisms. The gene organization suggested that φMN1 evolved from a non-Thermus phage through large-scale recombination events of the genes determining the host specificity, followed by gradual evolution by recombination of both the thermophilic and mesophilic DNAs assimilated by the host Thermus cells. This newly isolated phage will provide evolutionary insights into thermophilic phages.</p>\",\"PeriodicalId\":15842,\"journal\":{\"name\":\"Journal of General and Applied Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General and Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2323/jgam.2023.06.008\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2023.06.008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以一株IV型毛缺失菌株为指示宿主,从日本温泉中分离到一株嗜热热菌裂解噬菌体,命名为φMN1。电镜检查显示φMN1具有一个二十面体头部和一个可收缩的尾部,表明φMN1属于肌病毒科。对φMN1在宿主细胞上吸附的电镜分析表明,噬菌体受体分子均匀分布在细胞外表面。φMN1的环状双链DNA长度为76,659个碱基对,鸟嘌呤和胞嘧啶含量为61.8%。据预测,它含有99个开放阅读框,其推测的远端尾纤维蛋白在序列和长度方面与IV型依赖于毛的φYS40不同,而远端尾纤维蛋白是非毛状宿主细胞表面受体识别所必需的。噬菌体蛋白质组学树显示φMN1和φYS40在同一簇中,但许多基因序列相似性较低,有些基因似乎来自中温和嗜热生物。基因组织表明,φMN1是通过决定宿主特异性的基因的大规模重组事件从非热噬菌体进化而来的,随后是由宿主热细胞同化的嗜热和中温dna的重组逐渐进化而来。这种新分离的噬菌体将为嗜热噬菌体的进化提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isolation and genomic analysis of a type IV pili-independent Thermus thermophilus phage, φMN1 from a Japanese hot spring.

A Thermus thermophilus lytic phage was isolated from a Japanese hot spring using a type IV pili-deficient strain as an indicator host, and designated as φMN1. Electron microscopic (EM) examination revealed that φMN1 had an icosahedral head and a contractile tail, suggesting that φMN1 belonged to Myoviridae. An EM analysis focused on φMN1 adsorption to the Thermus host cell showed that the receptor molecules for the phage were uniformly distributed on the outer surface of the cells. The circular double-stranded DNA of φMN1 was 76,659 base pairs in length, and the guanine and cytosine content was 61.8%. It was predicted to contain 99 open reading frames, and its putative distal tail fiber protein, which is essential for non-piliated host cell surface receptor recognition, was dissimilar in terms of sequence and length with its counterpart in the type IV pili-dependent φYS40. A phage proteomic tree revealed that φMN1 and φYS40 are in the same cluster, but many genes had low sequence similarities and some seemed to be derived from both mesophilic and thermophilic organisms. The gene organization suggested that φMN1 evolved from a non-Thermus phage through large-scale recombination events of the genes determining the host specificity, followed by gradual evolution by recombination of both the thermophilic and mesophilic DNAs assimilated by the host Thermus cells. This newly isolated phage will provide evolutionary insights into thermophilic phages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of General and Applied Microbiology
Journal of General and Applied Microbiology 生物-生物工程与应用微生物
CiteScore
2.40
自引率
0.00%
发文量
42
审稿时长
6-12 weeks
期刊介绍: JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.
期刊最新文献
Marine bacteria have multiple polyamide 4-degrading enzymes. Structure of the SigF1-dependent pilA1 gene promoter and characterization of the light-activated response in the cyanobacterium Synechococcus elongatus PCC 7942. The chromosome level whole genome sequence and the seconary matabolism gene cluster prediction of Fusarium meridionale, the pathogen causing maize ear rot. Directed evolution of highly sensitive and stringent choline-induced gene expression controllers. Rational Design of a Yeast-derived 3',5'-bisphosphate Nucleotidase with Improved Substrate Specificity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1