{"title":"在前爬泳中,哪些划水周期阶段具有推动力?","authors":"Stelios G Psycharakis, Simon G S Coleman","doi":"10.1080/02701367.2023.2203724","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> The aim of this study was fourfold: (1) to quantify acceleration, velocity, and phase overlap for each phase of the stroke cycle (SC) during 200 m front crawl; (2) for each variable, to identify any differences between the four SC phases; (3) to investigate changes in variables during the 200 m; (4) to explore any association between performance and each variable. <b>Methods:</b> Ten swimmers performed a 200 m maximum swim. Four SCs were analyzed, one for each 50 m, using three-dimensional methods. Each SC was split into four phases: entry, pull, push, and recovery. Center of mass (CM) acceleration; maximum, minimum, and average CM velocity; phase duration, and, overlap of a phase of one arm with each phase of the opposite arm were calculated. <b>Results and Conclusion:</b> Phase velocities were positively correlated with performance and decreased during the 200 m. The acceleration data showed high within and between-swimmer variability. When the entry of one arm overlapped with the pull, and sometimes push, phase of the opposite arm, it was propulsive for the whole body. The pull was the slowest phase and overlapped predominantly with the opposite arm's recovery. The push phase was often propulsive for the whole body, regardless of the overlaps with the other arm, and together with the entry were the fastest phases. The recovery of each arm was mostly resistive for the whole body, except the short period of overlap with the opposite arm's push phase.</p>","PeriodicalId":54491,"journal":{"name":"Research Quarterly for Exercise and Sport","volume":" ","pages":"325-333"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Which Phases of the Stroke Cycle Are Propulsive in Front Crawl Swimming?\",\"authors\":\"Stelios G Psycharakis, Simon G S Coleman\",\"doi\":\"10.1080/02701367.2023.2203724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose:</b> The aim of this study was fourfold: (1) to quantify acceleration, velocity, and phase overlap for each phase of the stroke cycle (SC) during 200 m front crawl; (2) for each variable, to identify any differences between the four SC phases; (3) to investigate changes in variables during the 200 m; (4) to explore any association between performance and each variable. <b>Methods:</b> Ten swimmers performed a 200 m maximum swim. Four SCs were analyzed, one for each 50 m, using three-dimensional methods. Each SC was split into four phases: entry, pull, push, and recovery. Center of mass (CM) acceleration; maximum, minimum, and average CM velocity; phase duration, and, overlap of a phase of one arm with each phase of the opposite arm were calculated. <b>Results and Conclusion:</b> Phase velocities were positively correlated with performance and decreased during the 200 m. The acceleration data showed high within and between-swimmer variability. When the entry of one arm overlapped with the pull, and sometimes push, phase of the opposite arm, it was propulsive for the whole body. The pull was the slowest phase and overlapped predominantly with the opposite arm's recovery. The push phase was often propulsive for the whole body, regardless of the overlaps with the other arm, and together with the entry were the fastest phases. The recovery of each arm was mostly resistive for the whole body, except the short period of overlap with the opposite arm's push phase.</p>\",\"PeriodicalId\":54491,\"journal\":{\"name\":\"Research Quarterly for Exercise and Sport\",\"volume\":\" \",\"pages\":\"325-333\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Quarterly for Exercise and Sport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02701367.2023.2203724\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HOSPITALITY, LEISURE, SPORT & TOURISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Quarterly for Exercise and Sport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02701367.2023.2203724","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
Which Phases of the Stroke Cycle Are Propulsive in Front Crawl Swimming?
Purpose: The aim of this study was fourfold: (1) to quantify acceleration, velocity, and phase overlap for each phase of the stroke cycle (SC) during 200 m front crawl; (2) for each variable, to identify any differences between the four SC phases; (3) to investigate changes in variables during the 200 m; (4) to explore any association between performance and each variable. Methods: Ten swimmers performed a 200 m maximum swim. Four SCs were analyzed, one for each 50 m, using three-dimensional methods. Each SC was split into four phases: entry, pull, push, and recovery. Center of mass (CM) acceleration; maximum, minimum, and average CM velocity; phase duration, and, overlap of a phase of one arm with each phase of the opposite arm were calculated. Results and Conclusion: Phase velocities were positively correlated with performance and decreased during the 200 m. The acceleration data showed high within and between-swimmer variability. When the entry of one arm overlapped with the pull, and sometimes push, phase of the opposite arm, it was propulsive for the whole body. The pull was the slowest phase and overlapped predominantly with the opposite arm's recovery. The push phase was often propulsive for the whole body, regardless of the overlaps with the other arm, and together with the entry were the fastest phases. The recovery of each arm was mostly resistive for the whole body, except the short period of overlap with the opposite arm's push phase.
期刊介绍:
Research Quarterly for Exercise and Sport publishes research in the art and science of human movement that contributes significantly to the knowledge base of the field as new information, reviews, substantiation or contradiction of previous findings, development of theory, or as application of new or improved techniques. The goals of RQES are to provide a scholarly outlet for knowledge that: (a) contributes to the study of human movement, particularly its cross-disciplinary and interdisciplinary nature; (b) impacts theory and practice regarding human movement; (c) stimulates research about human movement; and (d) provides theoretical reviews and tutorials related to the study of human movement. The editorial board, associate editors, and external reviewers assist the editor-in-chief. Qualified reviewers in the appropriate subdisciplines review manuscripts deemed suitable. Authors are usually advised of the decision on their papers within 75–90 days.