{"title":"来自共生蓝藻的生物合成酶和天然产物的亮点。","authors":"Paul M. D'Agostino","doi":"10.1039/d3np00011g","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: up to 2023</p><p>Cyanobacteria have long been known for their intriguing repertoire of natural product scaffolds, which are often distinct from other phyla. Cyanobacteria are ecologically significant organisms that form a myriad of different symbioses including with sponges and ascidians in the marine environment or with plants and fungi, in the form of lichens, in terrestrial environments. Whilst there have been several high-profile discoveries of symbiotic cyanobacterial natural products, genomic data is scarce and discovery efforts have remained limited. However, the rise of (meta-)genomic sequencing has improved these efforts, emphasized by a steep increase in publications in recent years. This highlight focuses on selected examples of symbiotic cyanobacterial-derived natural products and their biosyntheses to link chemistry with corresponding biosynthetic logic. Further highlighted are remaining gaps in knowledge for the formation of characteristic structural motifs. It is anticipated that the continued rise of (meta-)genomic next-generation sequencing of symbiontic cyanobacterial systems will lead to many exciting discoveries in the future.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"40 11","pages":"Pages 1701-1717"},"PeriodicalIF":10.2000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Highlights of biosynthetic enzymes and natural products from symbiotic cyanobacteria†\",\"authors\":\"Paul M. D'Agostino\",\"doi\":\"10.1039/d3np00011g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covering: up to 2023</p><p>Cyanobacteria have long been known for their intriguing repertoire of natural product scaffolds, which are often distinct from other phyla. Cyanobacteria are ecologically significant organisms that form a myriad of different symbioses including with sponges and ascidians in the marine environment or with plants and fungi, in the form of lichens, in terrestrial environments. Whilst there have been several high-profile discoveries of symbiotic cyanobacterial natural products, genomic data is scarce and discovery efforts have remained limited. However, the rise of (meta-)genomic sequencing has improved these efforts, emphasized by a steep increase in publications in recent years. This highlight focuses on selected examples of symbiotic cyanobacterial-derived natural products and their biosyntheses to link chemistry with corresponding biosynthetic logic. Further highlighted are remaining gaps in knowledge for the formation of characteristic structural motifs. It is anticipated that the continued rise of (meta-)genomic next-generation sequencing of symbiontic cyanobacterial systems will lead to many exciting discoveries in the future.</p></div>\",\"PeriodicalId\":94,\"journal\":{\"name\":\"Natural Product Reports\",\"volume\":\"40 11\",\"pages\":\"Pages 1701-1717\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0265056823001149\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056823001149","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Highlights of biosynthetic enzymes and natural products from symbiotic cyanobacteria†
Covering: up to 2023
Cyanobacteria have long been known for their intriguing repertoire of natural product scaffolds, which are often distinct from other phyla. Cyanobacteria are ecologically significant organisms that form a myriad of different symbioses including with sponges and ascidians in the marine environment or with plants and fungi, in the form of lichens, in terrestrial environments. Whilst there have been several high-profile discoveries of symbiotic cyanobacterial natural products, genomic data is scarce and discovery efforts have remained limited. However, the rise of (meta-)genomic sequencing has improved these efforts, emphasized by a steep increase in publications in recent years. This highlight focuses on selected examples of symbiotic cyanobacterial-derived natural products and their biosyntheses to link chemistry with corresponding biosynthetic logic. Further highlighted are remaining gaps in knowledge for the formation of characteristic structural motifs. It is anticipated that the continued rise of (meta-)genomic next-generation sequencing of symbiontic cyanobacterial systems will lead to many exciting discoveries in the future.
期刊介绍:
Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis.
With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results.
NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.