Andrew K Martusevich, Vladimir V Nazarov, Alexandra V Surovegina, Alexander V Novikov
{"title":"生物组织的近场微波断层成像:未来展望。","authors":"Andrew K Martusevich, Vladimir V Nazarov, Alexandra V Surovegina, Alexander V Novikov","doi":"10.1615/CritRevBiomedEng.2022042194","DOIUrl":null,"url":null,"abstract":"<p><p>This overview shows the mapping of specific visualization techniques, depth assessment of the structure of the underlying tissues and used wavelengths of radiation. Medical imaging is currently one of the most dynamically developing areas of medical science. The main aim of the review is a systematization of information on the current status of the microwave imaging of biological objects, primarily of body tissues. The main options of microwave sensing of biological objects are analyzed. Two basic techniques for sensing differing evaluation parameters are characterized. They are microwave thermometry (passive) and near-field resonance imaging. The physical principles of microwave sensing application are discussed. It is shown that the resonant near-field microwave tomography allows visualization of the structure of biological tissues on the basis of the spatial distribution of their electrodynamic characteristics - permittivity and conductivity. Potential areas for this method in dermatology, including dermatooncology, are shown. The known results of applying the method to patients with dermatoses are given. The informativeness of the technology in the early diagnosis of melanoma is shown. The prospects of microwave diagnostics in combustiology, reconstructive and plastic surgery are demonstrated. Thus, microwave sensing is a modern, dynamically developing method of biophysical assessment of body tissues. There is a strong indication of the feasibility of application of microwave sensing in combustiology (in different periods of burn disease), as well as in reconstructive surgery. Further research in this and other areas of biomedicine will significantly expand the range of possibilities of modern technologies of visualization.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"50 4","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Field Microwave Tomography of Biological Tissues: Future Perspectives.\",\"authors\":\"Andrew K Martusevich, Vladimir V Nazarov, Alexandra V Surovegina, Alexander V Novikov\",\"doi\":\"10.1615/CritRevBiomedEng.2022042194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This overview shows the mapping of specific visualization techniques, depth assessment of the structure of the underlying tissues and used wavelengths of radiation. Medical imaging is currently one of the most dynamically developing areas of medical science. The main aim of the review is a systematization of information on the current status of the microwave imaging of biological objects, primarily of body tissues. The main options of microwave sensing of biological objects are analyzed. Two basic techniques for sensing differing evaluation parameters are characterized. They are microwave thermometry (passive) and near-field resonance imaging. The physical principles of microwave sensing application are discussed. It is shown that the resonant near-field microwave tomography allows visualization of the structure of biological tissues on the basis of the spatial distribution of their electrodynamic characteristics - permittivity and conductivity. Potential areas for this method in dermatology, including dermatooncology, are shown. The known results of applying the method to patients with dermatoses are given. The informativeness of the technology in the early diagnosis of melanoma is shown. The prospects of microwave diagnostics in combustiology, reconstructive and plastic surgery are demonstrated. Thus, microwave sensing is a modern, dynamically developing method of biophysical assessment of body tissues. There is a strong indication of the feasibility of application of microwave sensing in combustiology (in different periods of burn disease), as well as in reconstructive surgery. Further research in this and other areas of biomedicine will significantly expand the range of possibilities of modern technologies of visualization.</p>\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"50 4\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2022042194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2022042194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Near-Field Microwave Tomography of Biological Tissues: Future Perspectives.
This overview shows the mapping of specific visualization techniques, depth assessment of the structure of the underlying tissues and used wavelengths of radiation. Medical imaging is currently one of the most dynamically developing areas of medical science. The main aim of the review is a systematization of information on the current status of the microwave imaging of biological objects, primarily of body tissues. The main options of microwave sensing of biological objects are analyzed. Two basic techniques for sensing differing evaluation parameters are characterized. They are microwave thermometry (passive) and near-field resonance imaging. The physical principles of microwave sensing application are discussed. It is shown that the resonant near-field microwave tomography allows visualization of the structure of biological tissues on the basis of the spatial distribution of their electrodynamic characteristics - permittivity and conductivity. Potential areas for this method in dermatology, including dermatooncology, are shown. The known results of applying the method to patients with dermatoses are given. The informativeness of the technology in the early diagnosis of melanoma is shown. The prospects of microwave diagnostics in combustiology, reconstructive and plastic surgery are demonstrated. Thus, microwave sensing is a modern, dynamically developing method of biophysical assessment of body tissues. There is a strong indication of the feasibility of application of microwave sensing in combustiology (in different periods of burn disease), as well as in reconstructive surgery. Further research in this and other areas of biomedicine will significantly expand the range of possibilities of modern technologies of visualization.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.