基于dODF系数混合效应建模的纵向DW-MRI婴儿图谱构建框架。

Heejong Kim, Martin Styner, Joseph Piven, Guido Gerig
{"title":"基于dODF系数混合效应建模的纵向DW-MRI婴儿图谱构建框架。","authors":"Heejong Kim,&nbsp;Martin Styner,&nbsp;Joseph Piven,&nbsp;Guido Gerig","doi":"10.1007/978-3-030-52893-5_13","DOIUrl":null,"url":null,"abstract":"<p><p>Building of atlases plays a crucial role in the analysis of brain images. In scenarios where early growth, aging or disease trajectories are of key importance, longitudinal atlases become necessary as references, most often created from cross-sectional data. New opportunities will be offered by creating longitudinal brain atlases from longitudinal subject-specific image data, where explicit modeling of subject's variability in slope and intercept leads to a more robust estimation of average trajectories but also to estimates of confidence bounds. This work focuses on a framework to build a continuous 4D atlas from longitudinal high angular resolution diffusion images (HARDI) where, unlike atlases of derived scalar diffusion indices such as FA, statistics on dODFs is preserved. Multi-scalar images obtained from DW images are used for geometric alignment, and linear mixed-effects modeling from longitudinal diffusion orientation distribution functions (dODF) leads to estimation of continuous dODF changes. The proposed method is applied to a longitudinal dataset of HARDI images from healthy developing infants in the age range of 3 to 36 months. Verification of mixed-effects modeling is obtained by voxel-wise goodness of fit calculations. To demonstrate the potential of our method, we display changes of longitudinal atlas using dODF and derived generalized fractional anisotropy (GFA) of dODF. We also investigate white matter maturation patterns in genu, body, and splenium of the corpus callosum. The framework can be used to build an average dODF atlas from HARDI data and to derive subject-specific and population-based longitudinal change trajectories.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"2020 ","pages":"149-159"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341566/pdf/nihms-1723534.pdf","citationCount":"4","resultStr":"{\"title\":\"A framework to construct a longitudinal DW-MRI infant atlas based on mixed effects modeling of dODF coefficients.\",\"authors\":\"Heejong Kim,&nbsp;Martin Styner,&nbsp;Joseph Piven,&nbsp;Guido Gerig\",\"doi\":\"10.1007/978-3-030-52893-5_13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Building of atlases plays a crucial role in the analysis of brain images. In scenarios where early growth, aging or disease trajectories are of key importance, longitudinal atlases become necessary as references, most often created from cross-sectional data. New opportunities will be offered by creating longitudinal brain atlases from longitudinal subject-specific image data, where explicit modeling of subject's variability in slope and intercept leads to a more robust estimation of average trajectories but also to estimates of confidence bounds. This work focuses on a framework to build a continuous 4D atlas from longitudinal high angular resolution diffusion images (HARDI) where, unlike atlases of derived scalar diffusion indices such as FA, statistics on dODFs is preserved. Multi-scalar images obtained from DW images are used for geometric alignment, and linear mixed-effects modeling from longitudinal diffusion orientation distribution functions (dODF) leads to estimation of continuous dODF changes. The proposed method is applied to a longitudinal dataset of HARDI images from healthy developing infants in the age range of 3 to 36 months. Verification of mixed-effects modeling is obtained by voxel-wise goodness of fit calculations. To demonstrate the potential of our method, we display changes of longitudinal atlas using dODF and derived generalized fractional anisotropy (GFA) of dODF. We also investigate white matter maturation patterns in genu, body, and splenium of the corpus callosum. The framework can be used to build an average dODF atlas from HARDI data and to derive subject-specific and population-based longitudinal change trajectories.</p>\",\"PeriodicalId\":72661,\"journal\":{\"name\":\"Computational diffusion MRI : MICCAI Workshop\",\"volume\":\"2020 \",\"pages\":\"149-159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341566/pdf/nihms-1723534.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational diffusion MRI : MICCAI Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-52893-5_13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-52893-5_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

地图集的建立在脑图像分析中起着至关重要的作用。在早期生长、衰老或疾病轨迹至关重要的情况下,纵向地图集作为参考是必要的,通常是根据横断面数据创建的。从纵向受试者特定图像数据创建纵向脑地图集将提供新的机会,其中受试者斜率和截距变异性的明确建模导致对平均轨迹的更稳健估计,但也导致对置信界限的估计。这项工作的重点是建立一个框架,从纵向高角分辨率扩散图像(HARDI)建立一个连续的四维地图集,与派生的标量扩散指数(如FA)的地图集不同,dodf的统计数据被保留。利用DW图像获得的多标量图像进行几何对齐,利用纵向扩散方向分布函数(dODF)进行线性混合效应建模,估计连续dODF变化。所提出的方法应用于3至36个月的健康发育婴儿的HARDI图像纵向数据集。混合效果建模的验证是通过体素拟合优度计算获得的。为了证明该方法的潜力,我们利用dODF显示了纵向图谱的变化,并推导了dODF的广义分数各向异性(GFA)。我们还研究了膝、体和胼胝体脾的白质成熟模式。该框架可用于根据HARDI数据构建平均dODF图谱,并得出特定主题和基于人群的纵向变化轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A framework to construct a longitudinal DW-MRI infant atlas based on mixed effects modeling of dODF coefficients.

Building of atlases plays a crucial role in the analysis of brain images. In scenarios where early growth, aging or disease trajectories are of key importance, longitudinal atlases become necessary as references, most often created from cross-sectional data. New opportunities will be offered by creating longitudinal brain atlases from longitudinal subject-specific image data, where explicit modeling of subject's variability in slope and intercept leads to a more robust estimation of average trajectories but also to estimates of confidence bounds. This work focuses on a framework to build a continuous 4D atlas from longitudinal high angular resolution diffusion images (HARDI) where, unlike atlases of derived scalar diffusion indices such as FA, statistics on dODFs is preserved. Multi-scalar images obtained from DW images are used for geometric alignment, and linear mixed-effects modeling from longitudinal diffusion orientation distribution functions (dODF) leads to estimation of continuous dODF changes. The proposed method is applied to a longitudinal dataset of HARDI images from healthy developing infants in the age range of 3 to 36 months. Verification of mixed-effects modeling is obtained by voxel-wise goodness of fit calculations. To demonstrate the potential of our method, we display changes of longitudinal atlas using dODF and derived generalized fractional anisotropy (GFA) of dODF. We also investigate white matter maturation patterns in genu, body, and splenium of the corpus callosum. The framework can be used to build an average dODF atlas from HARDI data and to derive subject-specific and population-based longitudinal change trajectories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI. Automated Mapping of Residual Distortion Severity in Diffusion MRI. Stepwise Stochastic Dictionary Adaptation Improves Microstructure Reconstruction with Orientation Distribution Function Fingerprinting. Computational Diffusion MRI: 13th International Workshop, CDMRI 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1