DongWon Oh, Nicole Wedel, Brandon Labbree, Alexander Todorov
{"title":"没有光环效应的可信度判断:一种数据驱动的计算建模方法。","authors":"DongWon Oh, Nicole Wedel, Brandon Labbree, Alexander Todorov","doi":"10.1177/03010066231178489","DOIUrl":null,"url":null,"abstract":"<p><p>Trustworthy-looking faces are also perceived as more attractive, but are there other meaningful cues that contribute to perceived trustworthiness? Using data-driven models, we identify these cues after removing attractiveness cues. In Experiment 1, we show that both judgments of trustworthiness and attractiveness of faces manipulated by a model of perceived trustworthiness change in the same direction. To control for the effect of attractiveness, we build two new models of perceived trustworthiness: a subtraction model, which forces the perceived attractiveness and trustworthiness to be negatively correlated (Experiment 2), and an orthogonal model, which reduces their correlation (Experiment 3). In both experiments, faces manipulated to appear more trustworthy were indeed perceived to be more trustworthy, but not more attractive. Importantly, in both experiments, these faces were also perceived as more approachable and with more positive expressions, as indicated by both judgments and machine learning algorithms. The current studies show that the visual cues used for trustworthiness and attractiveness judgments can be separated, and that apparent approachability and facial emotion are driving trustworthiness judgments and possibly general valence evaluation.</p>","PeriodicalId":49708,"journal":{"name":"Perception","volume":"52 8","pages":"590-607"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trustworthiness judgments without the halo effect: A data-driven computational modeling approach.\",\"authors\":\"DongWon Oh, Nicole Wedel, Brandon Labbree, Alexander Todorov\",\"doi\":\"10.1177/03010066231178489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trustworthy-looking faces are also perceived as more attractive, but are there other meaningful cues that contribute to perceived trustworthiness? Using data-driven models, we identify these cues after removing attractiveness cues. In Experiment 1, we show that both judgments of trustworthiness and attractiveness of faces manipulated by a model of perceived trustworthiness change in the same direction. To control for the effect of attractiveness, we build two new models of perceived trustworthiness: a subtraction model, which forces the perceived attractiveness and trustworthiness to be negatively correlated (Experiment 2), and an orthogonal model, which reduces their correlation (Experiment 3). In both experiments, faces manipulated to appear more trustworthy were indeed perceived to be more trustworthy, but not more attractive. Importantly, in both experiments, these faces were also perceived as more approachable and with more positive expressions, as indicated by both judgments and machine learning algorithms. The current studies show that the visual cues used for trustworthiness and attractiveness judgments can be separated, and that apparent approachability and facial emotion are driving trustworthiness judgments and possibly general valence evaluation.</p>\",\"PeriodicalId\":49708,\"journal\":{\"name\":\"Perception\",\"volume\":\"52 8\",\"pages\":\"590-607\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perception\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/03010066231178489\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perception","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/03010066231178489","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Trustworthiness judgments without the halo effect: A data-driven computational modeling approach.
Trustworthy-looking faces are also perceived as more attractive, but are there other meaningful cues that contribute to perceived trustworthiness? Using data-driven models, we identify these cues after removing attractiveness cues. In Experiment 1, we show that both judgments of trustworthiness and attractiveness of faces manipulated by a model of perceived trustworthiness change in the same direction. To control for the effect of attractiveness, we build two new models of perceived trustworthiness: a subtraction model, which forces the perceived attractiveness and trustworthiness to be negatively correlated (Experiment 2), and an orthogonal model, which reduces their correlation (Experiment 3). In both experiments, faces manipulated to appear more trustworthy were indeed perceived to be more trustworthy, but not more attractive. Importantly, in both experiments, these faces were also perceived as more approachable and with more positive expressions, as indicated by both judgments and machine learning algorithms. The current studies show that the visual cues used for trustworthiness and attractiveness judgments can be separated, and that apparent approachability and facial emotion are driving trustworthiness judgments and possibly general valence evaluation.
期刊介绍:
Perception is a traditional print journal covering all areas of the perceptual sciences, but with a strong historical emphasis on perceptual illusions. Perception is a subscription journal, free for authors to publish their research as a Standard Article, Short Report or Short & Sweet. The journal also publishes Editorials and Book Reviews.