实验进化迫使酒酒球菌耐酸,突出了柠檬酸位点的关键作用

IF 2.5 4区 生物学 Q3 MICROBIOLOGY Research in microbiology Pub Date : 2023-06-01 DOI:10.1016/j.resmic.2023.104048
Frédérique Julliat , Camille Eicher , Nezha Tourti , Philippe Glaser , Nicolas Cabanel , Joana Coulon , Marion Favier , Hervé Alexandre , Cristina Reguant , Stéphane Guyot , Cosette Grandvalet
{"title":"实验进化迫使酒酒球菌耐酸,突出了柠檬酸位点的关键作用","authors":"Frédérique Julliat ,&nbsp;Camille Eicher ,&nbsp;Nezha Tourti ,&nbsp;Philippe Glaser ,&nbsp;Nicolas Cabanel ,&nbsp;Joana Coulon ,&nbsp;Marion Favier ,&nbsp;Hervé Alexandre ,&nbsp;Cristina Reguant ,&nbsp;Stéphane Guyot ,&nbsp;Cosette Grandvalet","doi":"10.1016/j.resmic.2023.104048","DOIUrl":null,"url":null,"abstract":"<div><p><em>Oenococcus oeni</em> is the main lactic acid bacterium associated with malolactic fermentation (MLF) of wines. MLF plays an important role in determining the final quality of wines. Nevertheless, due to the stressful conditions inherent to wine and especially acidity, MLF may be delayed. This study aimed to explore by adaptive evolution improvements in the acid tolerance of starters but also to gain a better understanding of the mechanisms involved in adaptation toward acidity. Four independent populations of the <em>O. oeni</em> ATCC BAA-1163 strain were propagated (approximately 560 generations) in a temporally varying environment, consisting in a gradual pH decrease from pH 5.3 to pH 2.9. Whole genome sequence comparison of these populations revealed that more than 45% of the substituted mutations occurred in only five loci for the evolved populations. One of these five fixed mutations affects <em>mae</em>, the first gene of the citrate operon. When grown in an acidic medium supplemented with citrate, a significantly higher bacterial biomass was produced with the evolved populations compared to the parental strain. Furthermore, the evolved populations slowed down their citrate consumption at low pH without impacting malolactic performance.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental evolution forcing Oenococcus oeni acid tolerance highlights critical role of the citrate locus\",\"authors\":\"Frédérique Julliat ,&nbsp;Camille Eicher ,&nbsp;Nezha Tourti ,&nbsp;Philippe Glaser ,&nbsp;Nicolas Cabanel ,&nbsp;Joana Coulon ,&nbsp;Marion Favier ,&nbsp;Hervé Alexandre ,&nbsp;Cristina Reguant ,&nbsp;Stéphane Guyot ,&nbsp;Cosette Grandvalet\",\"doi\":\"10.1016/j.resmic.2023.104048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Oenococcus oeni</em> is the main lactic acid bacterium associated with malolactic fermentation (MLF) of wines. MLF plays an important role in determining the final quality of wines. Nevertheless, due to the stressful conditions inherent to wine and especially acidity, MLF may be delayed. This study aimed to explore by adaptive evolution improvements in the acid tolerance of starters but also to gain a better understanding of the mechanisms involved in adaptation toward acidity. Four independent populations of the <em>O. oeni</em> ATCC BAA-1163 strain were propagated (approximately 560 generations) in a temporally varying environment, consisting in a gradual pH decrease from pH 5.3 to pH 2.9. Whole genome sequence comparison of these populations revealed that more than 45% of the substituted mutations occurred in only five loci for the evolved populations. One of these five fixed mutations affects <em>mae</em>, the first gene of the citrate operon. When grown in an acidic medium supplemented with citrate, a significantly higher bacterial biomass was produced with the evolved populations compared to the parental strain. Furthermore, the evolved populations slowed down their citrate consumption at low pH without impacting malolactic performance.</p></div>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923250823000232\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823000232","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

酒球菌是葡萄酒苹果酸-乳酸发酵(MLF)的主要乳酸菌。MLF在决定葡萄酒的最终质量方面起着重要作用。然而,由于葡萄酒固有的压力条件,尤其是酸度,MLF可能会延迟。本研究旨在通过适应性进化来探索起动机耐酸性的改善,同时也更好地了解对酸性的适应机制。O.oeni ATCC BAA-1163菌株的四个独立种群在随时间变化的环境中繁殖(约560代),包括pH从5.3逐渐降低到2.9。对这些种群的全基因组序列比较显示,超过45%的取代突变仅发生在进化种群的五个基因座中。这五个固定突变中的一个影响mae,即柠檬酸操纵子的第一个基因。当在补充柠檬酸盐的酸性培养基中生长时,与亲本菌株相比,进化种群产生的细菌生物量显著更高。此外,进化种群在低pH下减缓了柠檬酸盐的消耗,而不会影响苹果酸乳酸的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental evolution forcing Oenococcus oeni acid tolerance highlights critical role of the citrate locus

Oenococcus oeni is the main lactic acid bacterium associated with malolactic fermentation (MLF) of wines. MLF plays an important role in determining the final quality of wines. Nevertheless, due to the stressful conditions inherent to wine and especially acidity, MLF may be delayed. This study aimed to explore by adaptive evolution improvements in the acid tolerance of starters but also to gain a better understanding of the mechanisms involved in adaptation toward acidity. Four independent populations of the O. oeni ATCC BAA-1163 strain were propagated (approximately 560 generations) in a temporally varying environment, consisting in a gradual pH decrease from pH 5.3 to pH 2.9. Whole genome sequence comparison of these populations revealed that more than 45% of the substituted mutations occurred in only five loci for the evolved populations. One of these five fixed mutations affects mae, the first gene of the citrate operon. When grown in an acidic medium supplemented with citrate, a significantly higher bacterial biomass was produced with the evolved populations compared to the parental strain. Furthermore, the evolved populations slowed down their citrate consumption at low pH without impacting malolactic performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in microbiology
Research in microbiology 生物-微生物学
CiteScore
4.10
自引率
3.80%
发文量
54
审稿时长
16 days
期刊介绍: Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.
期刊最新文献
Targeting MurG enzyme in Klebsiella pneumoniae: An in silico approach to novel antimicrobial discovery. Editorial board The genomic approach of antimicrobial resistance of Salmonella Typhimurium isolates from guinea pigs in Lima, Peru Myxobacteria: biology and bioactive secondary metabolites Archaea: current and potential biotechnological applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1