LncRNA PSMG3-AS1在前列腺癌中上调,并通过DNA甲基化下调miR-106b。

IF 2.1 4区 医学 Q3 ANDROLOGY Systems Biology in Reproductive Medicine Pub Date : 2023-08-01 DOI:10.1080/19396368.2023.2187269
Liansheng Zhang, Yougan Chen, Zhenjie Wang, Qiang Xia
{"title":"LncRNA PSMG3-AS1在前列腺癌中上调,并通过DNA甲基化下调miR-106b。","authors":"Liansheng Zhang,&nbsp;Yougan Chen,&nbsp;Zhenjie Wang,&nbsp;Qiang Xia","doi":"10.1080/19396368.2023.2187269","DOIUrl":null,"url":null,"abstract":"<p><p>Long non-coding RNA PSMG3-AS1 is known to play critical roles in several types of cancer, while its role in prostate carcinoma (PC) is unknown. This study aimed to explore the involvement of PSMG3-AS1 in PC. In this study, RT-qPCR analysis showed that PSMG3-AS1 was upregulated, while miR-106b was downregulated in PC. PSMG3-AS1 and miR-106b were inversely and significantly correlated across PC tissue samples. In addition, in PC cells, overexpression of PSMG3-AS1 increased the DNA methylation of miR-106b and decreased the expression levels of miR-106b. In contrast, no significant alteration in the expression of PSMG3-AS1 was observed in cells transfected with miR-106b mimic. Cell proliferation analysis showed that PSMG3-AS1 reduced the inhibitory effects of miR-106b overexpression on cell proliferation. Taken together, our data suggested that PSMG3-AS1 could downregulate miR-106b through DNA methylation to suppress PC cell proliferation.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"69 4","pages":"264-270"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA PSMG3-AS1 is upregulated in prostate carcinoma and downregulates miR-106b through DNA methylation.\",\"authors\":\"Liansheng Zhang,&nbsp;Yougan Chen,&nbsp;Zhenjie Wang,&nbsp;Qiang Xia\",\"doi\":\"10.1080/19396368.2023.2187269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long non-coding RNA PSMG3-AS1 is known to play critical roles in several types of cancer, while its role in prostate carcinoma (PC) is unknown. This study aimed to explore the involvement of PSMG3-AS1 in PC. In this study, RT-qPCR analysis showed that PSMG3-AS1 was upregulated, while miR-106b was downregulated in PC. PSMG3-AS1 and miR-106b were inversely and significantly correlated across PC tissue samples. In addition, in PC cells, overexpression of PSMG3-AS1 increased the DNA methylation of miR-106b and decreased the expression levels of miR-106b. In contrast, no significant alteration in the expression of PSMG3-AS1 was observed in cells transfected with miR-106b mimic. Cell proliferation analysis showed that PSMG3-AS1 reduced the inhibitory effects of miR-106b overexpression on cell proliferation. Taken together, our data suggested that PSMG3-AS1 could downregulate miR-106b through DNA methylation to suppress PC cell proliferation.</p>\",\"PeriodicalId\":22184,\"journal\":{\"name\":\"Systems Biology in Reproductive Medicine\",\"volume\":\"69 4\",\"pages\":\"264-270\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Biology in Reproductive Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19396368.2023.2187269\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ANDROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2023.2187269","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

已知长链非编码RNA PSMG3-AS1在几种类型的癌症中发挥关键作用,而其在前列腺癌(PC)中的作用尚不清楚。本研究旨在探讨PSMG3-AS1在PC中的作用。本研究中,RT-qPCR分析显示PSMG3-AS1在PC中上调,miR-106b在PC中下调。PSMG3-AS1和miR-106b在PC组织样本中呈显著负相关。此外,在PC细胞中,PSMG3-AS1的过表达增加了miR-106b的DNA甲基化,降低了miR-106b的表达水平。相比之下,转染miR-106b mimic的细胞中PSMG3-AS1的表达未见明显变化。细胞增殖分析显示,PSMG3-AS1降低了miR-106b过表达对细胞增殖的抑制作用。综上所述,我们的数据表明PSMG3-AS1可以通过DNA甲基化下调miR-106b来抑制PC细胞的增殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LncRNA PSMG3-AS1 is upregulated in prostate carcinoma and downregulates miR-106b through DNA methylation.

Long non-coding RNA PSMG3-AS1 is known to play critical roles in several types of cancer, while its role in prostate carcinoma (PC) is unknown. This study aimed to explore the involvement of PSMG3-AS1 in PC. In this study, RT-qPCR analysis showed that PSMG3-AS1 was upregulated, while miR-106b was downregulated in PC. PSMG3-AS1 and miR-106b were inversely and significantly correlated across PC tissue samples. In addition, in PC cells, overexpression of PSMG3-AS1 increased the DNA methylation of miR-106b and decreased the expression levels of miR-106b. In contrast, no significant alteration in the expression of PSMG3-AS1 was observed in cells transfected with miR-106b mimic. Cell proliferation analysis showed that PSMG3-AS1 reduced the inhibitory effects of miR-106b overexpression on cell proliferation. Taken together, our data suggested that PSMG3-AS1 could downregulate miR-106b through DNA methylation to suppress PC cell proliferation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
4.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.
期刊最新文献
E-SBiRM. Engineered exosome as a biological nanoplatform for drug delivery of Rosmarinic acid to improve implantation in mice with induced endometritis. Hydroxycitric acid and capsaicin combination alleviates obesity-induced testicular apoptosis, oxidative stress and inflammation. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Effects of first and second division modes on euploidy acquisition in human embryo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1