{"title":"失语症患者语音错误的精确性支持语言生产中语音工作记忆的资源模型。","authors":"Jenah Black, Nazbanou Nozari","doi":"10.1080/02643294.2023.2206012","DOIUrl":null,"url":null,"abstract":"<p><p>Working memory (WM) is critical for many cognitive functions including language production. A key feature of WM is its capacity limitation. Two models have been proposed to account for such capacity limitation: slot models and resource models. In recent years, resource models have found support in both visual and auditory perception, but do they also extend to production? We investigate this by analyzing sublexical errors from four individuals with aphasia. Using tools from computational linguistics, we first define the concept of \"precision\" of sublexical errors. We then demonstrate that such precision decreases with increased working memory load, i.e., word length, as predicted by resource models. Finally, we rule out alternative accounts of this effect, such as articulatory simplification. These data provide the first evidence for the applicability of the resource model to production and further point to the generalizability of this account as a model of resource division in WM.</p>","PeriodicalId":50670,"journal":{"name":"Cognitive Neuropsychology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precision of phonological errors in aphasia supports resource models of phonological working memory in language production.\",\"authors\":\"Jenah Black, Nazbanou Nozari\",\"doi\":\"10.1080/02643294.2023.2206012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Working memory (WM) is critical for many cognitive functions including language production. A key feature of WM is its capacity limitation. Two models have been proposed to account for such capacity limitation: slot models and resource models. In recent years, resource models have found support in both visual and auditory perception, but do they also extend to production? We investigate this by analyzing sublexical errors from four individuals with aphasia. Using tools from computational linguistics, we first define the concept of \\\"precision\\\" of sublexical errors. We then demonstrate that such precision decreases with increased working memory load, i.e., word length, as predicted by resource models. Finally, we rule out alternative accounts of this effect, such as articulatory simplification. These data provide the first evidence for the applicability of the resource model to production and further point to the generalizability of this account as a model of resource division in WM.</p>\",\"PeriodicalId\":50670,\"journal\":{\"name\":\"Cognitive Neuropsychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuropsychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/02643294.2023.2206012\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuropsychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/02643294.2023.2206012","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
Precision of phonological errors in aphasia supports resource models of phonological working memory in language production.
Working memory (WM) is critical for many cognitive functions including language production. A key feature of WM is its capacity limitation. Two models have been proposed to account for such capacity limitation: slot models and resource models. In recent years, resource models have found support in both visual and auditory perception, but do they also extend to production? We investigate this by analyzing sublexical errors from four individuals with aphasia. Using tools from computational linguistics, we first define the concept of "precision" of sublexical errors. We then demonstrate that such precision decreases with increased working memory load, i.e., word length, as predicted by resource models. Finally, we rule out alternative accounts of this effect, such as articulatory simplification. These data provide the first evidence for the applicability of the resource model to production and further point to the generalizability of this account as a model of resource division in WM.
期刊介绍:
Cognitive Neuropsychology is of interest to cognitive scientists and neuroscientists, neuropsychologists, neurologists, psycholinguists, speech pathologists, physiotherapists, and psychiatrists.