Timothy B Dunn, Edgar López-López, Taewon David Kim, José L Medina-Franco, Ramón Alain Miranda-Quintana
{"title":"探索具有扩展相似性的活动景观:谷本是否足够?","authors":"Timothy B Dunn, Edgar López-López, Taewon David Kim, José L Medina-Franco, Ramón Alain Miranda-Quintana","doi":"10.1002/minf.202300056","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding structure-activity landscapes is essential in drug discovery. Similarly, it has been shown that the presence of activity cliffs in compound data sets can have a substantial impact not only on the design progress but also can influence the predictive ability of machine learning models. With the continued expansion of the chemical space and the currently available large and ultra-large libraries, it is imperative to implement efficient tools to analyze the activity landscape of compound data sets rapidly. The goal of this study is to show the applicability of the n-ary indices to quantify the structure-activity landscapes of large compound data sets using different types of structural representation rapidly and efficiently. We also discuss how a recently introduced medoid algorithm provides the foundation to finding optimum correlations between similarity measures and structure-activity rankings. The applicability of the n-ary indices and the medoid algorithm is shown by analyzing the activity landscape of 10 compound data sets with pharmaceutical relevance using three fingerprints of different designs, 16 extended similarity indices, and 11 coincidence thresholds.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"42 7","pages":"e2300056"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring activity landscapes with extended similarity: is Tanimoto enough?\",\"authors\":\"Timothy B Dunn, Edgar López-López, Taewon David Kim, José L Medina-Franco, Ramón Alain Miranda-Quintana\",\"doi\":\"10.1002/minf.202300056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding structure-activity landscapes is essential in drug discovery. Similarly, it has been shown that the presence of activity cliffs in compound data sets can have a substantial impact not only on the design progress but also can influence the predictive ability of machine learning models. With the continued expansion of the chemical space and the currently available large and ultra-large libraries, it is imperative to implement efficient tools to analyze the activity landscape of compound data sets rapidly. The goal of this study is to show the applicability of the n-ary indices to quantify the structure-activity landscapes of large compound data sets using different types of structural representation rapidly and efficiently. We also discuss how a recently introduced medoid algorithm provides the foundation to finding optimum correlations between similarity measures and structure-activity rankings. The applicability of the n-ary indices and the medoid algorithm is shown by analyzing the activity landscape of 10 compound data sets with pharmaceutical relevance using three fingerprints of different designs, 16 extended similarity indices, and 11 coincidence thresholds.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\"42 7\",\"pages\":\"e2300056\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300056\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300056","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Exploring activity landscapes with extended similarity: is Tanimoto enough?
Understanding structure-activity landscapes is essential in drug discovery. Similarly, it has been shown that the presence of activity cliffs in compound data sets can have a substantial impact not only on the design progress but also can influence the predictive ability of machine learning models. With the continued expansion of the chemical space and the currently available large and ultra-large libraries, it is imperative to implement efficient tools to analyze the activity landscape of compound data sets rapidly. The goal of this study is to show the applicability of the n-ary indices to quantify the structure-activity landscapes of large compound data sets using different types of structural representation rapidly and efficiently. We also discuss how a recently introduced medoid algorithm provides the foundation to finding optimum correlations between similarity measures and structure-activity rankings. The applicability of the n-ary indices and the medoid algorithm is shown by analyzing the activity landscape of 10 compound data sets with pharmaceutical relevance using three fingerprints of different designs, 16 extended similarity indices, and 11 coincidence thresholds.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.