{"title":"通过阻断SH-SY5Y细胞中CRYAB的降解,ERK抑制有助于EV71感染期间IFN-β启动子的激活。","authors":"Dengming Chen, Cheng Chen, Jingyu Tan, Jing Yang, Bangtao Chen","doi":"10.1093/femspd/ftad011","DOIUrl":null,"url":null,"abstract":"<p><p>Enterovirus 71 (EV71) can cause severe hand-foot-and-mouth disease with neurological complications. It has evolved multiple mechanisms to compromise the host type I interferon (IFN-I) response. In neuronal cells, EV71-mediated IFN-I antagonism may be associated with neural precursor cell-expressed developmentally downregulated 4-like (Nedd4L), the E3 ubiquitin ligase that can interact with alphaB-crystallin (CRYAB) in the regulation of Nav1.5 stability. Here, we investigated the effect of CRYAB stability on IFN-β promoter activity in neuronal SH-SY5Y cells infected with EV71, and its relations to Nedd4 L and extracellular signal-regulated kinases (ERK). Results showed that EV71 infection significantly caused CRYAB degradation via the Nedd4L-proteasome pathway, which required ERK-mediated phosphorylation of Serine 45 in CRYAB. Subsequently, it was observed that siRNA- or EV71-mediated CRYAB reduction limited Poly(dAT)-activated IFN-β promoter, and CRYAB stabilisation by U0126-mediated inhibition of ERK activation remarkably enhanced the activity of IFN-β promoter upon EV71 challenge. Collectively, we elucidate a novel mechanism by which ERK activation contributes to EV71 immune escape via CRYAB/IFN-β axis in SH-SY5Y cells, indicating that perturbing ERK activation is desirable for anti-EV71 therapy.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"81 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ERK inhibition aids IFN-β promoter activation during EV71 infection by blocking CRYAB degradation in SH-SY5Y cells.\",\"authors\":\"Dengming Chen, Cheng Chen, Jingyu Tan, Jing Yang, Bangtao Chen\",\"doi\":\"10.1093/femspd/ftad011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enterovirus 71 (EV71) can cause severe hand-foot-and-mouth disease with neurological complications. It has evolved multiple mechanisms to compromise the host type I interferon (IFN-I) response. In neuronal cells, EV71-mediated IFN-I antagonism may be associated with neural precursor cell-expressed developmentally downregulated 4-like (Nedd4L), the E3 ubiquitin ligase that can interact with alphaB-crystallin (CRYAB) in the regulation of Nav1.5 stability. Here, we investigated the effect of CRYAB stability on IFN-β promoter activity in neuronal SH-SY5Y cells infected with EV71, and its relations to Nedd4 L and extracellular signal-regulated kinases (ERK). Results showed that EV71 infection significantly caused CRYAB degradation via the Nedd4L-proteasome pathway, which required ERK-mediated phosphorylation of Serine 45 in CRYAB. Subsequently, it was observed that siRNA- or EV71-mediated CRYAB reduction limited Poly(dAT)-activated IFN-β promoter, and CRYAB stabilisation by U0126-mediated inhibition of ERK activation remarkably enhanced the activity of IFN-β promoter upon EV71 challenge. Collectively, we elucidate a novel mechanism by which ERK activation contributes to EV71 immune escape via CRYAB/IFN-β axis in SH-SY5Y cells, indicating that perturbing ERK activation is desirable for anti-EV71 therapy.</p>\",\"PeriodicalId\":19795,\"journal\":{\"name\":\"Pathogens and disease\",\"volume\":\"81 \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens and disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/femspd/ftad011\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftad011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
ERK inhibition aids IFN-β promoter activation during EV71 infection by blocking CRYAB degradation in SH-SY5Y cells.
Enterovirus 71 (EV71) can cause severe hand-foot-and-mouth disease with neurological complications. It has evolved multiple mechanisms to compromise the host type I interferon (IFN-I) response. In neuronal cells, EV71-mediated IFN-I antagonism may be associated with neural precursor cell-expressed developmentally downregulated 4-like (Nedd4L), the E3 ubiquitin ligase that can interact with alphaB-crystallin (CRYAB) in the regulation of Nav1.5 stability. Here, we investigated the effect of CRYAB stability on IFN-β promoter activity in neuronal SH-SY5Y cells infected with EV71, and its relations to Nedd4 L and extracellular signal-regulated kinases (ERK). Results showed that EV71 infection significantly caused CRYAB degradation via the Nedd4L-proteasome pathway, which required ERK-mediated phosphorylation of Serine 45 in CRYAB. Subsequently, it was observed that siRNA- or EV71-mediated CRYAB reduction limited Poly(dAT)-activated IFN-β promoter, and CRYAB stabilisation by U0126-mediated inhibition of ERK activation remarkably enhanced the activity of IFN-β promoter upon EV71 challenge. Collectively, we elucidate a novel mechanism by which ERK activation contributes to EV71 immune escape via CRYAB/IFN-β axis in SH-SY5Y cells, indicating that perturbing ERK activation is desirable for anti-EV71 therapy.
期刊介绍:
Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.