{"title":"婴儿期行为发展和睡眠脑电图简化地形标志物之间缺乏相关性","authors":"Matthieu Beaugrand , Valeria Jaramillo , Andjela Markovic , Reto Huber , Malcolm Kohler , Sarah F. Schoch , Salome Kurth","doi":"10.1016/j.nbscr.2023.100098","DOIUrl":null,"url":null,"abstract":"<div><p>The sleep EEG mirrors neuronal connectivity, especially during development when the brain undergoes substantial rewiring. As children grow, the slow-wave activity (SWA; 0.75–4.25 Hz) spatial distribution in their sleep EEG changes along a posterior-to-anterior gradient. Topographical SWA markers have been linked to critical neurobehavioral functions, such as motor skills, in school-aged children. However, the relationship between topographical markers in infancy and later behavioral outcomes is still unclear. This study aims to explore reliable indicators of neurodevelopment in infants by analyzing their sleep EEG patterns. Thirty-one 6-month-old infants (15 female) underwent high-density EEG recordings during nighttime sleep. We defined markers based on the topographical distribution of SWA and theta activity, including central/occipital and frontal/occipital ratios and an index derived from local EEG power variability. Linear models were applied to test whether markers relate to concurrent, later, or retrospective behavioral scores, assessed by the parent-reported Ages & Stages Questionnaire at ages 3, 6, 12, and 24 months. Results indicate that the topographical markers of the sleep EEG power in infants were not significantly linked to behavioral development at any age. Further research, such as longitudinal sleep EEG in newborns, is needed to better understand the relationship between these markers and behavioral development and assess their predictive value for individual differences.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"15 ","pages":"Article 100098"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/06/eb/main.PMC10329166.pdf","citationCount":"0","resultStr":"{\"title\":\"Lack of association between behavioral development and simplified topographical markers of the sleep EEG in infancy\",\"authors\":\"Matthieu Beaugrand , Valeria Jaramillo , Andjela Markovic , Reto Huber , Malcolm Kohler , Sarah F. Schoch , Salome Kurth\",\"doi\":\"10.1016/j.nbscr.2023.100098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sleep EEG mirrors neuronal connectivity, especially during development when the brain undergoes substantial rewiring. As children grow, the slow-wave activity (SWA; 0.75–4.25 Hz) spatial distribution in their sleep EEG changes along a posterior-to-anterior gradient. Topographical SWA markers have been linked to critical neurobehavioral functions, such as motor skills, in school-aged children. However, the relationship between topographical markers in infancy and later behavioral outcomes is still unclear. This study aims to explore reliable indicators of neurodevelopment in infants by analyzing their sleep EEG patterns. Thirty-one 6-month-old infants (15 female) underwent high-density EEG recordings during nighttime sleep. We defined markers based on the topographical distribution of SWA and theta activity, including central/occipital and frontal/occipital ratios and an index derived from local EEG power variability. Linear models were applied to test whether markers relate to concurrent, later, or retrospective behavioral scores, assessed by the parent-reported Ages & Stages Questionnaire at ages 3, 6, 12, and 24 months. Results indicate that the topographical markers of the sleep EEG power in infants were not significantly linked to behavioral development at any age. Further research, such as longitudinal sleep EEG in newborns, is needed to better understand the relationship between these markers and behavioral development and assess their predictive value for individual differences.</p></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"15 \",\"pages\":\"Article 100098\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/06/eb/main.PMC10329166.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245199442300010X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245199442300010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Lack of association between behavioral development and simplified topographical markers of the sleep EEG in infancy
The sleep EEG mirrors neuronal connectivity, especially during development when the brain undergoes substantial rewiring. As children grow, the slow-wave activity (SWA; 0.75–4.25 Hz) spatial distribution in their sleep EEG changes along a posterior-to-anterior gradient. Topographical SWA markers have been linked to critical neurobehavioral functions, such as motor skills, in school-aged children. However, the relationship between topographical markers in infancy and later behavioral outcomes is still unclear. This study aims to explore reliable indicators of neurodevelopment in infants by analyzing their sleep EEG patterns. Thirty-one 6-month-old infants (15 female) underwent high-density EEG recordings during nighttime sleep. We defined markers based on the topographical distribution of SWA and theta activity, including central/occipital and frontal/occipital ratios and an index derived from local EEG power variability. Linear models were applied to test whether markers relate to concurrent, later, or retrospective behavioral scores, assessed by the parent-reported Ages & Stages Questionnaire at ages 3, 6, 12, and 24 months. Results indicate that the topographical markers of the sleep EEG power in infants were not significantly linked to behavioral development at any age. Further research, such as longitudinal sleep EEG in newborns, is needed to better understand the relationship between these markers and behavioral development and assess their predictive value for individual differences.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.