{"title":"侧缰NMDA受体在曲马多诱导的调节中的作用。","authors":"Arman Hajikarim-Hamedani, Amirhossein Heidari, Mitra-Sadat Sadat-Shirazi, Sarah Mahboubi, Samira Raminfard, Solmaz Khalifeh, Mohammad-Reza Zarrindast","doi":"10.1097/FBP.0000000000000730","DOIUrl":null,"url":null,"abstract":"<p><p>The role of the lateral habenula (LHb) as a hub for receiving and relaying signals from the limbic system to serotonergic, dopaminergic, and norepinephrinergic regions in the brainstem makes this area a critical region in the control of reward and addiction. Behavioral evidence reveals the vital role of the LHb in negative symptoms during withdrawal. In this investigation, we study the role of the LHb N-Methyl D-Aspartate receptor (NMDAR) in the modulation of tramadol reward. Male adult Wistar rats were used in this study. The effect of intra-LHb micro-injection of NMDAR agonist (NMDA, 0.1, 0.5, 2 µg/rat) and antagonist (D-AP5, 0.1, 0.5, 1 µg/rat) was evaluated in conditioned place preference (CPP) paradigm. The obtained results showed that intra-LHb administration of NMDA induced place aversion dose-dependently, while blockade of NMDAR in the LHb using D-AP5 micro-injection led to an increased preference score in the CPP task. Co-administration of NMDA (0.5 µg/rat) with tramadol (4 mg/kg) reduced preference score, while co-administration of D-AP5 (0.5 µg/rat) with a non-effective dose of tramadol (1 mg/kg) potentiate the rewarding effect of tramadol. LHb receives inputs from the limbic system and projects to the monoaminergic nuclei in the brainstem. It has been declared that NMDAR is expressed in LHb, and as obtained data revealed, these receptors could modulate the rewarding effect of tramadol. Therefore, NMDA receptors in the LHb might be a new target for modulating tramadol abuse.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of lateral habenula NMDA receptors in tramadol-induced conditioning.\",\"authors\":\"Arman Hajikarim-Hamedani, Amirhossein Heidari, Mitra-Sadat Sadat-Shirazi, Sarah Mahboubi, Samira Raminfard, Solmaz Khalifeh, Mohammad-Reza Zarrindast\",\"doi\":\"10.1097/FBP.0000000000000730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of the lateral habenula (LHb) as a hub for receiving and relaying signals from the limbic system to serotonergic, dopaminergic, and norepinephrinergic regions in the brainstem makes this area a critical region in the control of reward and addiction. Behavioral evidence reveals the vital role of the LHb in negative symptoms during withdrawal. In this investigation, we study the role of the LHb N-Methyl D-Aspartate receptor (NMDAR) in the modulation of tramadol reward. Male adult Wistar rats were used in this study. The effect of intra-LHb micro-injection of NMDAR agonist (NMDA, 0.1, 0.5, 2 µg/rat) and antagonist (D-AP5, 0.1, 0.5, 1 µg/rat) was evaluated in conditioned place preference (CPP) paradigm. The obtained results showed that intra-LHb administration of NMDA induced place aversion dose-dependently, while blockade of NMDAR in the LHb using D-AP5 micro-injection led to an increased preference score in the CPP task. Co-administration of NMDA (0.5 µg/rat) with tramadol (4 mg/kg) reduced preference score, while co-administration of D-AP5 (0.5 µg/rat) with a non-effective dose of tramadol (1 mg/kg) potentiate the rewarding effect of tramadol. LHb receives inputs from the limbic system and projects to the monoaminergic nuclei in the brainstem. It has been declared that NMDAR is expressed in LHb, and as obtained data revealed, these receptors could modulate the rewarding effect of tramadol. Therefore, NMDA receptors in the LHb might be a new target for modulating tramadol abuse.</p>\",\"PeriodicalId\":8832,\"journal\":{\"name\":\"Behavioural Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Pharmacology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1097/FBP.0000000000000730\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Pharmacology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1097/FBP.0000000000000730","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
侧链束(LHb)作为接收和传递来自边缘系统的信号到脑干中血清素能、多巴胺能和去甲肾上腺素能区域的枢纽,使该区域成为控制奖励和成瘾的关键区域。行为证据显示LHb在戒断期间阴性症状中的重要作用。在这项研究中,我们研究了LHb n -甲基d -天冬氨酸受体(NMDAR)在曲马多奖赏调节中的作用。本研究采用雄性成年Wistar大鼠。在条件位置偏好(CPP)模式下,评价lhb内微注射NMDAR激动剂(NMDA, 0.1、0.5、2µg/大鼠)和拮抗剂(D-AP5, 0.1、0.5、1µg/大鼠)的效果。结果表明,在LHb内给予NMDA诱导了位置厌恶的剂量依赖性,而在LHb中使用D-AP5微注射阻断NMDA导致CPP任务中的偏好得分增加。NMDA(0.5µg/大鼠)与曲马多(4 mg/kg)共给药可降低偏好评分,而D-AP5(0.5µg/大鼠)与非有效剂量曲马多(1 mg/kg)共给药可增强曲马多的奖励作用。LHb接受来自边缘系统的输入,并投射到脑干的单胺能核。已有研究表明,NMDAR在LHb中表达,并且根据获得的数据显示,这些受体可以调节曲马多的奖励作用。因此,LHb中的NMDA受体可能是调节曲马多滥用的新靶点。
The role of lateral habenula NMDA receptors in tramadol-induced conditioning.
The role of the lateral habenula (LHb) as a hub for receiving and relaying signals from the limbic system to serotonergic, dopaminergic, and norepinephrinergic regions in the brainstem makes this area a critical region in the control of reward and addiction. Behavioral evidence reveals the vital role of the LHb in negative symptoms during withdrawal. In this investigation, we study the role of the LHb N-Methyl D-Aspartate receptor (NMDAR) in the modulation of tramadol reward. Male adult Wistar rats were used in this study. The effect of intra-LHb micro-injection of NMDAR agonist (NMDA, 0.1, 0.5, 2 µg/rat) and antagonist (D-AP5, 0.1, 0.5, 1 µg/rat) was evaluated in conditioned place preference (CPP) paradigm. The obtained results showed that intra-LHb administration of NMDA induced place aversion dose-dependently, while blockade of NMDAR in the LHb using D-AP5 micro-injection led to an increased preference score in the CPP task. Co-administration of NMDA (0.5 µg/rat) with tramadol (4 mg/kg) reduced preference score, while co-administration of D-AP5 (0.5 µg/rat) with a non-effective dose of tramadol (1 mg/kg) potentiate the rewarding effect of tramadol. LHb receives inputs from the limbic system and projects to the monoaminergic nuclei in the brainstem. It has been declared that NMDAR is expressed in LHb, and as obtained data revealed, these receptors could modulate the rewarding effect of tramadol. Therefore, NMDA receptors in the LHb might be a new target for modulating tramadol abuse.
期刊介绍:
Behavioural Pharmacology accepts original full and short research reports in diverse areas ranging from ethopharmacology to the pharmacology of schedule-controlled operant behaviour, provided that their primary focus is behavioural. Suitable topics include drug, chemical and hormonal effects on behaviour, the neurochemical mechanisms under-lying behaviour, and behavioural methods for the study of drug action. Both animal and human studies are welcome; however, studies reporting neurochemical data should have a predominantly behavioural focus, and human studies should not consist exclusively of clinical trials or case reports. Preference is given to studies that demonstrate and develop the potential of behavioural methods, and to papers reporting findings of direct relevance to clinical problems. Papers making a significant theoretical contribution are particularly welcome and, where possible and merited, space is made available for authors to explore fully the theoretical implications of their findings. Reviews of an area of the literature or at an appropriate stage in the development of an author’s own work are welcome. Commentaries in areas of current interest are also considered for publication, as are Reviews and Commentaries in areas outside behavioural pharmacology, but of importance and interest to behavioural pharmacologists. Behavioural Pharmacology publishes frequent Special Issues on current hot topics. The editors welcome correspondence about whether a paper in preparation might be suitable for inclusion in a Special Issue.