虚拟现实诱发晕机的预测和检测:利用时空脑电图数据和心率变异性的尖峰神经网络方法。

Q1 Computer Science Brain Informatics Pub Date : 2023-07-12 DOI:10.1186/s40708-023-00192-w
Alexander Hui Xiang Yang, Nikola Kirilov Kasabov, Yusuf Ozgur Cakmak
{"title":"虚拟现实诱发晕机的预测和检测:利用时空脑电图数据和心率变异性的尖峰神经网络方法。","authors":"Alexander Hui Xiang Yang,&nbsp;Nikola Kirilov Kasabov,&nbsp;Yusuf Ozgur Cakmak","doi":"10.1186/s40708-023-00192-w","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual Reality (VR) allows users to interact with 3D immersive environments and has the potential to be a key technology across many domain applications, including access to a future metaverse. Yet, consumer adoption of VR technology is limited by cybersickness (CS)-a debilitating sensation accompanied by a cluster of symptoms, including nausea, oculomotor issues and dizziness. A leading problem is the lack of automated objective tools to predict or detect CS in individuals, which can then be used for resistance training, timely warning systems or clinical intervention. This paper explores the spatiotemporal brain dynamics and heart rate variability involved in cybersickness and uses this information to both predict and detect CS episodes. The present study applies deep learning of EEG in a spiking neural network (SNN) architecture to predict CS prior to using VR (85.9%, F7) and detect it (76.6%, FP1, Cz). ECG-derived sympathetic heart rate variability (HRV) parameters can be used for both prediction (74.2%) and detection (72.6%) but at a lower accuracy than EEG. Multimodal data fusion of EEG and sympathetic HRV does not change this accuracy compared to ECG alone. The study found that Cz (premotor and supplementary motor cortex) and O2 (primary visual cortex) are key hubs in functionally connected networks associated with both CS events and susceptibility to CS. F7 is also suggested as a key area involved in integrating information and implementing responses to incongruent environments that induce cybersickness. Consequently, Cz, O2 and F7 are presented here as promising targets for intervention.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338414/pdf/","citationCount":"1","resultStr":"{\"title\":\"Prediction and detection of virtual reality induced cybersickness: a spiking neural network approach using spatiotemporal EEG brain data and heart rate variability.\",\"authors\":\"Alexander Hui Xiang Yang,&nbsp;Nikola Kirilov Kasabov,&nbsp;Yusuf Ozgur Cakmak\",\"doi\":\"10.1186/s40708-023-00192-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Virtual Reality (VR) allows users to interact with 3D immersive environments and has the potential to be a key technology across many domain applications, including access to a future metaverse. Yet, consumer adoption of VR technology is limited by cybersickness (CS)-a debilitating sensation accompanied by a cluster of symptoms, including nausea, oculomotor issues and dizziness. A leading problem is the lack of automated objective tools to predict or detect CS in individuals, which can then be used for resistance training, timely warning systems or clinical intervention. This paper explores the spatiotemporal brain dynamics and heart rate variability involved in cybersickness and uses this information to both predict and detect CS episodes. The present study applies deep learning of EEG in a spiking neural network (SNN) architecture to predict CS prior to using VR (85.9%, F7) and detect it (76.6%, FP1, Cz). ECG-derived sympathetic heart rate variability (HRV) parameters can be used for both prediction (74.2%) and detection (72.6%) but at a lower accuracy than EEG. Multimodal data fusion of EEG and sympathetic HRV does not change this accuracy compared to ECG alone. The study found that Cz (premotor and supplementary motor cortex) and O2 (primary visual cortex) are key hubs in functionally connected networks associated with both CS events and susceptibility to CS. F7 is also suggested as a key area involved in integrating information and implementing responses to incongruent environments that induce cybersickness. Consequently, Cz, O2 and F7 are presented here as promising targets for intervention.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"10 1\",\"pages\":\"15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338414/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-023-00192-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00192-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

虚拟现实(VR)允许用户与3D沉浸式环境进行交互,并有可能成为许多领域应用的关键技术,包括访问未来的虚拟世界。然而,消费者对虚拟现实技术的采用受到晕屏病(CS)的限制——晕屏病是一种伴随着恶心、动眼肌问题和头晕等一系列症状的衰弱感。一个主要问题是缺乏自动化的客观工具来预测或检测个人的CS,然后可以用于阻力训练,及时预警系统或临床干预。本文探讨了晕动病涉及的时空脑动力学和心率变异性,并利用这些信息来预测和检测CS发作。本研究采用尖峰神经网络(SNN)架构下的脑电图深度学习,在使用VR之前预测CS (85.9%, F7)并检测CS (76.6%, FP1, Cz)。心电图衍生的交感心率变异性(HRV)参数可用于预测(74.2%)和检测(72.6%),但准确性低于脑电图。与单独心电图相比,脑电图和交感HRV的多模态数据融合不会改变这种准确性。研究发现,Cz(运动前和辅助运动皮层)和O2(初级视觉皮层)是与CS事件和CS易感性相关的功能连接网络的关键枢纽。F7也被认为是一个关键区域,涉及整合信息和实施对引起晕动病的不一致环境的反应。因此,Cz, O2和F7在这里被提出作为有希望的干预目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction and detection of virtual reality induced cybersickness: a spiking neural network approach using spatiotemporal EEG brain data and heart rate variability.

Virtual Reality (VR) allows users to interact with 3D immersive environments and has the potential to be a key technology across many domain applications, including access to a future metaverse. Yet, consumer adoption of VR technology is limited by cybersickness (CS)-a debilitating sensation accompanied by a cluster of symptoms, including nausea, oculomotor issues and dizziness. A leading problem is the lack of automated objective tools to predict or detect CS in individuals, which can then be used for resistance training, timely warning systems or clinical intervention. This paper explores the spatiotemporal brain dynamics and heart rate variability involved in cybersickness and uses this information to both predict and detect CS episodes. The present study applies deep learning of EEG in a spiking neural network (SNN) architecture to predict CS prior to using VR (85.9%, F7) and detect it (76.6%, FP1, Cz). ECG-derived sympathetic heart rate variability (HRV) parameters can be used for both prediction (74.2%) and detection (72.6%) but at a lower accuracy than EEG. Multimodal data fusion of EEG and sympathetic HRV does not change this accuracy compared to ECG alone. The study found that Cz (premotor and supplementary motor cortex) and O2 (primary visual cortex) are key hubs in functionally connected networks associated with both CS events and susceptibility to CS. F7 is also suggested as a key area involved in integrating information and implementing responses to incongruent environments that induce cybersickness. Consequently, Cz, O2 and F7 are presented here as promising targets for intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1