语义错述的分类:一个词嵌入模型的优化。

Katy McKinney-Bock, Steven Bedrick
{"title":"语义错述的分类:一个词嵌入模型的优化。","authors":"Katy McKinney-Bock,&nbsp;Steven Bedrick","doi":"10.18653/v1/w19-2007","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical assessment of people with aphasia, impairment in the ability to recall and produce words for objects (<i>anomia</i>) is assessed using a confrontation naming task, where a target stimulus is viewed and a corresponding label is spoken by the participant. Vector space word embedding models have had inital results in assessing semantic similarity of target-production pairs in order to automate scoring of this task; however, the resulting models are also highly dependent upon training parameters. To select an optimal family of models, we fit a beta regression model to the distribution of performance metrics on a set of 2,880 grid search models and evaluate the resultant first- and second-order effects to explore how parameterization affects model performance. Comparing to SimLex-999, we show that clinical data can be used in an evaluation task with comparable optimal parameter settings as standard NLP evaluation datasets.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2019 RepEval","pages":"52-62"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328545/pdf/nihms-1908531.pdf","citationCount":"3","resultStr":"{\"title\":\"Classification of Semantic Paraphasias: Optimization of a Word Embedding Model.\",\"authors\":\"Katy McKinney-Bock,&nbsp;Steven Bedrick\",\"doi\":\"10.18653/v1/w19-2007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In clinical assessment of people with aphasia, impairment in the ability to recall and produce words for objects (<i>anomia</i>) is assessed using a confrontation naming task, where a target stimulus is viewed and a corresponding label is spoken by the participant. Vector space word embedding models have had inital results in assessing semantic similarity of target-production pairs in order to automate scoring of this task; however, the resulting models are also highly dependent upon training parameters. To select an optimal family of models, we fit a beta regression model to the distribution of performance metrics on a set of 2,880 grid search models and evaluate the resultant first- and second-order effects to explore how parameterization affects model performance. Comparing to SimLex-999, we show that clinical data can be used in an evaluation task with comparable optimal parameter settings as standard NLP evaluation datasets.</p>\",\"PeriodicalId\":74542,\"journal\":{\"name\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"volume\":\"2019 RepEval\",\"pages\":\"52-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328545/pdf/nihms-1908531.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/w19-2007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/w19-2007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在对失语症患者的临床评估中,通过一项对抗命名任务来评估回忆和产生物体单词(失语症)能力的损害,在这项任务中,参与者看到目标刺激并说出相应的标签。向量空间词嵌入模型在评估目标生成对的语义相似度方面取得了初步成果,从而实现了自动评分;然而,得到的模型也高度依赖于训练参数。为了选择最优的模型族,我们将beta回归模型拟合到2880个网格搜索模型上的性能指标分布,并评估由此产生的一阶和二阶效应,以探索参数化如何影响模型性能。与SimLex-999相比,我们表明临床数据可以用于具有可比较的最佳参数设置作为标准NLP评估数据集的评估任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Semantic Paraphasias: Optimization of a Word Embedding Model.

In clinical assessment of people with aphasia, impairment in the ability to recall and produce words for objects (anomia) is assessed using a confrontation naming task, where a target stimulus is viewed and a corresponding label is spoken by the participant. Vector space word embedding models have had inital results in assessing semantic similarity of target-production pairs in order to automate scoring of this task; however, the resulting models are also highly dependent upon training parameters. To select an optimal family of models, we fit a beta regression model to the distribution of performance metrics on a set of 2,880 grid search models and evaluate the resultant first- and second-order effects to explore how parameterization affects model performance. Comparing to SimLex-999, we show that clinical data can be used in an evaluation task with comparable optimal parameter settings as standard NLP evaluation datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection. Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. ScAN: Suicide Attempt and Ideation Events Dataset. ScAN: Suicide Attempt and Ideation Events Dataset Translational NLP: A New Paradigm and General Principles for Natural Language Processing Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1