{"title":"计算机化测试中异常行为的连续贝叶斯变化点检测程序。","authors":"Jing Lu, Chun Wang, Jiwei Zhang, Xue Wang","doi":"10.1111/bmsp.12305","DOIUrl":null,"url":null,"abstract":"<p>Changepoints are abrupt variations in a sequence of data in statistical inference. In educational and psychological assessments, it is essential to properly differentiate examinees' aberrant behaviours from solution behaviour to ensure test reliability and validity. In this paper, we propose a sequential Bayesian changepoint detection algorithm to monitor the locations of changepoints for response times in real time and, subsequently, further identify types of aberrant behaviours in conjunction with response patterns. Two simulation studies were conducted to investigate the efficiency and accuracy of the proposed detection procedure in terms of identifying one or multiple changepoints at different locations. In addition to manipulating the number and locations of changepoints, two types of aberrant behaviours were also considered: rapid guessing behaviour and cheating behaviour. Simulation results indicate that ability estimates could be improved after removing responses from aberrant behaviours identified by our approach. Two empirical examples were analysed to illustrate the application of the proposed sequential Bayesian changepoint detection procedure.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A sequential Bayesian changepoint detection procedure for aberrant behaviours in computerized testing\",\"authors\":\"Jing Lu, Chun Wang, Jiwei Zhang, Xue Wang\",\"doi\":\"10.1111/bmsp.12305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Changepoints are abrupt variations in a sequence of data in statistical inference. In educational and psychological assessments, it is essential to properly differentiate examinees' aberrant behaviours from solution behaviour to ensure test reliability and validity. In this paper, we propose a sequential Bayesian changepoint detection algorithm to monitor the locations of changepoints for response times in real time and, subsequently, further identify types of aberrant behaviours in conjunction with response patterns. Two simulation studies were conducted to investigate the efficiency and accuracy of the proposed detection procedure in terms of identifying one or multiple changepoints at different locations. In addition to manipulating the number and locations of changepoints, two types of aberrant behaviours were also considered: rapid guessing behaviour and cheating behaviour. Simulation results indicate that ability estimates could be improved after removing responses from aberrant behaviours identified by our approach. Two empirical examples were analysed to illustrate the application of the proposed sequential Bayesian changepoint detection procedure.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12305\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12305","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A sequential Bayesian changepoint detection procedure for aberrant behaviours in computerized testing
Changepoints are abrupt variations in a sequence of data in statistical inference. In educational and psychological assessments, it is essential to properly differentiate examinees' aberrant behaviours from solution behaviour to ensure test reliability and validity. In this paper, we propose a sequential Bayesian changepoint detection algorithm to monitor the locations of changepoints for response times in real time and, subsequently, further identify types of aberrant behaviours in conjunction with response patterns. Two simulation studies were conducted to investigate the efficiency and accuracy of the proposed detection procedure in terms of identifying one or multiple changepoints at different locations. In addition to manipulating the number and locations of changepoints, two types of aberrant behaviours were also considered: rapid guessing behaviour and cheating behaviour. Simulation results indicate that ability estimates could be improved after removing responses from aberrant behaviours identified by our approach. Two empirical examples were analysed to illustrate the application of the proposed sequential Bayesian changepoint detection procedure.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.