颅内动脉瘤血栓形成的血流动力学:一项计算机观察研究。

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL APL Bioengineering Pub Date : 2023-09-01 DOI:10.1063/5.0144848
Qiongyao Liu, Ali Sarrami-Foroushani, Yongxing Wang, Michael MacRaild, Christopher Kelly, Fengming Lin, Yan Xia, Shuang Song, Nishant Ravikumar, Tufail Patankar, Zeike A Taylor, Toni Lassila, Alejandro F Frangi
{"title":"颅内动脉瘤血栓形成的血流动力学:一项计算机观察研究。","authors":"Qiongyao Liu,&nbsp;Ali Sarrami-Foroushani,&nbsp;Yongxing Wang,&nbsp;Michael MacRaild,&nbsp;Christopher Kelly,&nbsp;Fengming Lin,&nbsp;Yan Xia,&nbsp;Shuang Song,&nbsp;Nishant Ravikumar,&nbsp;Tufail Patankar,&nbsp;Zeike A Taylor,&nbsp;Toni Lassila,&nbsp;Alejandro F Frangi","doi":"10.1063/5.0144848","DOIUrl":null,"url":null,"abstract":"<p><p>How prevalent is spontaneous thrombosis in a population containing all sizes of intracranial aneurysms? How can we calibrate computational models of thrombosis based on published data? How does spontaneous thrombosis differ in normo- and hypertensive subjects? We address the first question through a thorough analysis of published datasets that provide spontaneous thrombosis rates across different aneurysm characteristics. This analysis provides data for a subgroup of the general population of aneurysms, namely, those of large and giant size (>10 mm). Based on these observed spontaneous thrombosis rates, our computational modeling platform enables the first <i>in silico</i> observational study of spontaneous thrombosis prevalence across a broader set of aneurysm phenotypes. We generate 109 virtual patients and use a novel approach to calibrate two trigger thresholds: residence time and shear rate, thus addressing the second question. We then address the third question by utilizing this calibrated model to provide new insight into the effects of hypertension on spontaneous thrombosis. We demonstrate how a mechanistic thrombosis model calibrated on an intracranial aneurysm cohort can help estimate spontaneous thrombosis prevalence in a broader aneurysm population. This study is enabled through a fully automatic multi-scale modeling pipeline. We use the clinical spontaneous thrombosis data as an indirect population-level validation of a complex computational modeling framework. Furthermore, our framework allows exploration of the influence of hypertension in spontaneous thrombosis. This lays the foundation for <i>in silico</i> clinical trials of cerebrovascular devices in high-risk populations, e.g., assessing the performance of flow diverters in aneurysms for hypertensive patients.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"7 3","pages":"036102"},"PeriodicalIF":6.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329514/pdf/","citationCount":"1","resultStr":"{\"title\":\"Hemodynamics of thrombus formation in intracranial aneurysms: An <i>in silico</i> observational study.\",\"authors\":\"Qiongyao Liu,&nbsp;Ali Sarrami-Foroushani,&nbsp;Yongxing Wang,&nbsp;Michael MacRaild,&nbsp;Christopher Kelly,&nbsp;Fengming Lin,&nbsp;Yan Xia,&nbsp;Shuang Song,&nbsp;Nishant Ravikumar,&nbsp;Tufail Patankar,&nbsp;Zeike A Taylor,&nbsp;Toni Lassila,&nbsp;Alejandro F Frangi\",\"doi\":\"10.1063/5.0144848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How prevalent is spontaneous thrombosis in a population containing all sizes of intracranial aneurysms? How can we calibrate computational models of thrombosis based on published data? How does spontaneous thrombosis differ in normo- and hypertensive subjects? We address the first question through a thorough analysis of published datasets that provide spontaneous thrombosis rates across different aneurysm characteristics. This analysis provides data for a subgroup of the general population of aneurysms, namely, those of large and giant size (>10 mm). Based on these observed spontaneous thrombosis rates, our computational modeling platform enables the first <i>in silico</i> observational study of spontaneous thrombosis prevalence across a broader set of aneurysm phenotypes. We generate 109 virtual patients and use a novel approach to calibrate two trigger thresholds: residence time and shear rate, thus addressing the second question. We then address the third question by utilizing this calibrated model to provide new insight into the effects of hypertension on spontaneous thrombosis. We demonstrate how a mechanistic thrombosis model calibrated on an intracranial aneurysm cohort can help estimate spontaneous thrombosis prevalence in a broader aneurysm population. This study is enabled through a fully automatic multi-scale modeling pipeline. We use the clinical spontaneous thrombosis data as an indirect population-level validation of a complex computational modeling framework. Furthermore, our framework allows exploration of the influence of hypertension in spontaneous thrombosis. This lays the foundation for <i>in silico</i> clinical trials of cerebrovascular devices in high-risk populations, e.g., assessing the performance of flow diverters in aneurysms for hypertensive patients.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"7 3\",\"pages\":\"036102\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329514/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0144848\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0144848","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

摘要

在包含各种大小颅内动脉瘤的人群中,自发性血栓形成有多普遍?我们如何根据已发表的数据校准血栓形成的计算模型?自发性血栓形成在正常人和高血压患者中有何不同?我们通过对已发表的数据集进行全面分析来解决第一个问题,这些数据集提供了不同动脉瘤特征的自发性血栓形成率。该分析提供了一般动脉瘤亚群的数据,即那些大尺寸和巨型(>10 mm)的动脉瘤。基于这些观察到的自发血栓形成率,我们的计算建模平台能够首次在更广泛的动脉瘤表型中对自发血栓形成率进行计算机观察研究。我们生成了109名虚拟患者,并使用一种新颖的方法来校准两个触发阈值:停留时间和剪切速率,从而解决了第二个问题。然后,我们通过利用这个校准模型来解决第三个问题,为高血压对自发性血栓形成的影响提供新的见解。我们展示了在颅内动脉瘤队列上校准的机械血栓形成模型如何有助于估计更广泛的动脉瘤人群中自发性血栓形成的患病率。这项研究是通过一个全自动的多尺度建模管道实现的。我们使用临床自发性血栓形成数据作为复杂计算建模框架的间接人群水平验证。此外,我们的框架允许探索高血压对自发性血栓形成的影响。这为高危人群脑血管装置的计算机临床试验奠定了基础,例如评估高血压患者动脉瘤分流器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hemodynamics of thrombus formation in intracranial aneurysms: An in silico observational study.

How prevalent is spontaneous thrombosis in a population containing all sizes of intracranial aneurysms? How can we calibrate computational models of thrombosis based on published data? How does spontaneous thrombosis differ in normo- and hypertensive subjects? We address the first question through a thorough analysis of published datasets that provide spontaneous thrombosis rates across different aneurysm characteristics. This analysis provides data for a subgroup of the general population of aneurysms, namely, those of large and giant size (>10 mm). Based on these observed spontaneous thrombosis rates, our computational modeling platform enables the first in silico observational study of spontaneous thrombosis prevalence across a broader set of aneurysm phenotypes. We generate 109 virtual patients and use a novel approach to calibrate two trigger thresholds: residence time and shear rate, thus addressing the second question. We then address the third question by utilizing this calibrated model to provide new insight into the effects of hypertension on spontaneous thrombosis. We demonstrate how a mechanistic thrombosis model calibrated on an intracranial aneurysm cohort can help estimate spontaneous thrombosis prevalence in a broader aneurysm population. This study is enabled through a fully automatic multi-scale modeling pipeline. We use the clinical spontaneous thrombosis data as an indirect population-level validation of a complex computational modeling framework. Furthermore, our framework allows exploration of the influence of hypertension in spontaneous thrombosis. This lays the foundation for in silico clinical trials of cerebrovascular devices in high-risk populations, e.g., assessing the performance of flow diverters in aneurysms for hypertensive patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
期刊最新文献
Stacking model framework reveals clinical biochemical data and dietary behavior features associated with type 2 diabetes: A retrospective cohort study. Harmonic imaging for nonlinear detection of acoustic biomolecules. Intercellular junction-driven stromal cell stacking in a confined 3D microcavity. Apoptosis-associated genetic mechanisms in the transition from rheumatoid arthritis to osteoporosis: A bioinformatics and functional analysis approach. A programmable platform for probing cell migration and proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1