具有主体间纤维色散校正的扩散MRI图谱的鲁棒构建。

Zhanlong Yang, Geng Chen, Dinggang Shen, Pew-Thian Yap
{"title":"具有主体间纤维色散校正的扩散MRI图谱的鲁棒构建。","authors":"Zhanlong Yang,&nbsp;Geng Chen,&nbsp;Dinggang Shen,&nbsp;Pew-Thian Yap","doi":"10.1007/978-3-319-54130-3_9","DOIUrl":null,"url":null,"abstract":"<p><p>Construction of brain atlases is generally carried out using a two-step procedure involving registering a population of images to a common space and then fusing the aligned images to form an atlas. In practice, image registration is not perfect and simple averaging of the images will blur structures and cause artifacts. In diffusion MRI, this is further complicated by the possibility of within-voxel fiber misalignment due to natural inter-subject orientation dispersion. In this paper, we propose a method to improve the construction of diffusion atlases in light of inter-subject fiber dispersion. Our method involves a novel <i>q</i>-space (i.e., wavevector space) patch matching mechanism that is incorporated in a mean shift algorithm to seek the most probable signal at each point in <i>q</i>-space. Our method relies on the fact that the mean shift algorithm is a <i>mode seeking</i> algorithm that converges to the mode of a distribution and is hence robustness to outliers. Our method is therefore in effect seeking the most probable signal profile at each voxel given a distribution of profiles. Experimental results confirm that our method yields cleaner fiber orientation distribution functions with less artifacts caused by dispersion.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"2016 ","pages":"113-121"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-54130-3_9","citationCount":"2","resultStr":"{\"title\":\"Robust Construction of Diffusion MRI Atlases with Correction for Inter-Subject Fiber Dispersion.\",\"authors\":\"Zhanlong Yang,&nbsp;Geng Chen,&nbsp;Dinggang Shen,&nbsp;Pew-Thian Yap\",\"doi\":\"10.1007/978-3-319-54130-3_9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Construction of brain atlases is generally carried out using a two-step procedure involving registering a population of images to a common space and then fusing the aligned images to form an atlas. In practice, image registration is not perfect and simple averaging of the images will blur structures and cause artifacts. In diffusion MRI, this is further complicated by the possibility of within-voxel fiber misalignment due to natural inter-subject orientation dispersion. In this paper, we propose a method to improve the construction of diffusion atlases in light of inter-subject fiber dispersion. Our method involves a novel <i>q</i>-space (i.e., wavevector space) patch matching mechanism that is incorporated in a mean shift algorithm to seek the most probable signal at each point in <i>q</i>-space. Our method relies on the fact that the mean shift algorithm is a <i>mode seeking</i> algorithm that converges to the mode of a distribution and is hence robustness to outliers. Our method is therefore in effect seeking the most probable signal profile at each voxel given a distribution of profiles. Experimental results confirm that our method yields cleaner fiber orientation distribution functions with less artifacts caused by dispersion.</p>\",\"PeriodicalId\":72661,\"journal\":{\"name\":\"Computational diffusion MRI : MICCAI Workshop\",\"volume\":\"2016 \",\"pages\":\"113-121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-54130-3_9\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational diffusion MRI : MICCAI Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-54130-3_9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-54130-3_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

脑地图集的构建通常采用两步程序,包括将图像种群注册到公共空间,然后融合对齐的图像以形成地图集。在实际应用中,图像配准并不完美,对图像进行简单的平均会使结构模糊,产生伪影。在弥散MRI中,由于自然的主体间方向分散,可能会导致体素内纤维错位,这使情况进一步复杂化。本文提出了一种基于主体间光纤色散的扩散图谱构建方法。我们的方法涉及一种新的q空间(即波矢量空间)补丁匹配机制,该机制被纳入平均移位算法中,以在q空间的每个点上寻找最可能的信号。我们的方法依赖于这样一个事实,即均值移位算法是一种模式搜索算法,它收敛于分布的模式,因此对异常值具有鲁棒性。因此,我们的方法实际上是在给定剖面分布的每个体素上寻找最可能的信号剖面。实验结果证实,我们的方法得到了更干净的纤维取向分布函数和更少的分散引起的伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Construction of Diffusion MRI Atlases with Correction for Inter-Subject Fiber Dispersion.

Construction of brain atlases is generally carried out using a two-step procedure involving registering a population of images to a common space and then fusing the aligned images to form an atlas. In practice, image registration is not perfect and simple averaging of the images will blur structures and cause artifacts. In diffusion MRI, this is further complicated by the possibility of within-voxel fiber misalignment due to natural inter-subject orientation dispersion. In this paper, we propose a method to improve the construction of diffusion atlases in light of inter-subject fiber dispersion. Our method involves a novel q-space (i.e., wavevector space) patch matching mechanism that is incorporated in a mean shift algorithm to seek the most probable signal at each point in q-space. Our method relies on the fact that the mean shift algorithm is a mode seeking algorithm that converges to the mode of a distribution and is hence robustness to outliers. Our method is therefore in effect seeking the most probable signal profile at each voxel given a distribution of profiles. Experimental results confirm that our method yields cleaner fiber orientation distribution functions with less artifacts caused by dispersion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI. Automated Mapping of Residual Distortion Severity in Diffusion MRI. Stepwise Stochastic Dictionary Adaptation Improves Microstructure Reconstruction with Orientation Distribution Function Fingerprinting. Computational Diffusion MRI: 13th International Workshop, CDMRI 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1