基于多通道帧分组迭代硬阈值法的扩散加权图像去噪。

Jian Zhang, Geng Chen, Yong Zhang, Bin Dong, Dinggang Shen, Pew-Thian Yap
{"title":"基于多通道帧分组迭代硬阈值法的扩散加权图像去噪。","authors":"Jian Zhang,&nbsp;Geng Chen,&nbsp;Yong Zhang,&nbsp;Bin Dong,&nbsp;Dinggang Shen,&nbsp;Pew-Thian Yap","doi":"10.1007/978-3-319-54130-3_4","DOIUrl":null,"url":null,"abstract":"<p><p>Noise in diffusion-weighted (DW) images increases the complexity of quantitative analysis and decreases the reliability of inferences. Hence, to improve analysis, it is often desirable to remove noise and at the same time preserve relevant image features. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of DW images. Our approach (i) employs the unitary extension principle (UEP) to generate frames that are discrete analogues to differential operators of various orders; (ii) introduces a very efficient method for solving an <i>ℓ</i><sub>0</sub> denoising problem that involves only thresholding and solving a trivial inverse problem; and (iii) groups DW images acquired with neighboring gradient directions for collaborative denoising. Experiments using synthetic data with noncentral chi noise and real data with repeated scans confirm that our method yields superior performance compared with denoising using state-of-the-art methods such as non-local means.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"2016 ","pages":"49-59"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-54130-3_4","citationCount":"1","resultStr":"{\"title\":\"Denoising Diffusion-Weighted Images Using Grouped Iterative Hard Thresholding of Multi-Channel Framelets.\",\"authors\":\"Jian Zhang,&nbsp;Geng Chen,&nbsp;Yong Zhang,&nbsp;Bin Dong,&nbsp;Dinggang Shen,&nbsp;Pew-Thian Yap\",\"doi\":\"10.1007/978-3-319-54130-3_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Noise in diffusion-weighted (DW) images increases the complexity of quantitative analysis and decreases the reliability of inferences. Hence, to improve analysis, it is often desirable to remove noise and at the same time preserve relevant image features. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of DW images. Our approach (i) employs the unitary extension principle (UEP) to generate frames that are discrete analogues to differential operators of various orders; (ii) introduces a very efficient method for solving an <i>ℓ</i><sub>0</sub> denoising problem that involves only thresholding and solving a trivial inverse problem; and (iii) groups DW images acquired with neighboring gradient directions for collaborative denoising. Experiments using synthetic data with noncentral chi noise and real data with repeated scans confirm that our method yields superior performance compared with denoising using state-of-the-art methods such as non-local means.</p>\",\"PeriodicalId\":72661,\"journal\":{\"name\":\"Computational diffusion MRI : MICCAI Workshop\",\"volume\":\"2016 \",\"pages\":\"49-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-54130-3_4\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational diffusion MRI : MICCAI Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-54130-3_4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-54130-3_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

扩散加权(DW)图像中的噪声增加了定量分析的复杂性,降低了推断的可靠性。因此,为了改进分析,通常需要去除噪声,同时保留相关的图像特征。本文提出了一种基于紧小波框架的DW图像边缘保持去噪方法。我们的方法(i)采用统一扩展原理(UEP)来生成各种阶微分算子的离散类似物的帧;(ii)引入一种非常有效的方法来解决一个仅涉及阈值和求解一个平凡的逆问题的去噪问题;(iii)对梯度方向相邻的DW图像进行分组,进行协同去噪。使用具有非中心chi噪声的合成数据和具有重复扫描的真实数据进行的实验证实,与使用最先进的方法(如非局部均值)去噪相比,我们的方法产生了优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising Diffusion-Weighted Images Using Grouped Iterative Hard Thresholding of Multi-Channel Framelets.

Noise in diffusion-weighted (DW) images increases the complexity of quantitative analysis and decreases the reliability of inferences. Hence, to improve analysis, it is often desirable to remove noise and at the same time preserve relevant image features. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of DW images. Our approach (i) employs the unitary extension principle (UEP) to generate frames that are discrete analogues to differential operators of various orders; (ii) introduces a very efficient method for solving an 0 denoising problem that involves only thresholding and solving a trivial inverse problem; and (iii) groups DW images acquired with neighboring gradient directions for collaborative denoising. Experiments using synthetic data with noncentral chi noise and real data with repeated scans confirm that our method yields superior performance compared with denoising using state-of-the-art methods such as non-local means.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI. Automated Mapping of Residual Distortion Severity in Diffusion MRI. Diffusion phantom study of fiber crossings at varied angles reconstructed with ODF-Fingerprinting. Stepwise Stochastic Dictionary Adaptation Improves Microstructure Reconstruction with Orientation Distribution Function Fingerprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1