{"title":"全身振动促进坐骨神经挤压损伤模型大鼠运动神经成分功能恢复。","authors":"Atsushi Doi, Kyoka Oda, Masaki Matsumoto, Honoka Sakoguchi, Mizuki Honda, Yuma Ogata, Asuka Nakano, Misato Taniguchi, Shunya Fukushima, Kyogo Imayoshi, Kanta Nagao, Masami Toyoda, Hiroki Kameyama, Motoki Sonohata, Min-Chul Shin","doi":"10.12965/jer.2346178.089","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the effect of whole body vibration (WBV) on the sensory and motor nerve components with sciatic nerve injury model rats. Surgery was performed on 21 female Wister rats (6-8 weeks) under intraperitoneal anesthesia. The nerve-crush injuries for the left sciatic nerve were inflicted using a Sugita aneurysm clip. The sciatic nerve model rats were randomly divided into two groups (n=9; control group, n=12; WBV group). The rats in the WBV group walked in the cage with a vibratory stimulus (frequency 50 Hz, 20 min/day, 5 times/wk), while those in the control group walked in the cage without any vibratory stimulus. We used heat stimulation-induced sensory threshold and lumbar magnetic stimulation-induced motor-evoked potentials (MEPs) to measure the sensory and motor nerve components, respectively. Further, morphological measurements, bilateral hind-limb dimension, bilateral gastrocnemius dimension, and weight were evaluated. Consequently, there were no significant differences in the sensory threshold at the injury side between the control and WBV groups. However, at 4 and 6 weeks postoperatively, MEPs latencies in the WBV group were significantly shorter than those in the control group. Furthermore, both sides of the hind-limb dimension at 6 weeks postoperatively, the left side of the gastrocnemius dimension, and both sides of the gastrocnemius weight significantly increased. In conclusion, WBV especially accelerates the functional recovery of motor nerve components in sciatic nerve-crush injury model rats.</p>","PeriodicalId":15771,"journal":{"name":"Journal of Exercise Rehabilitation","volume":"19 3","pages":"149-162"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/6f/jer-19-3-149.PMC10331141.pdf","citationCount":"0","resultStr":"{\"title\":\"Whole body vibration accelerates the functional recovery of motor nerve components in sciatic nerve-crush injury model rats.\",\"authors\":\"Atsushi Doi, Kyoka Oda, Masaki Matsumoto, Honoka Sakoguchi, Mizuki Honda, Yuma Ogata, Asuka Nakano, Misato Taniguchi, Shunya Fukushima, Kyogo Imayoshi, Kanta Nagao, Masami Toyoda, Hiroki Kameyama, Motoki Sonohata, Min-Chul Shin\",\"doi\":\"10.12965/jer.2346178.089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the effect of whole body vibration (WBV) on the sensory and motor nerve components with sciatic nerve injury model rats. Surgery was performed on 21 female Wister rats (6-8 weeks) under intraperitoneal anesthesia. The nerve-crush injuries for the left sciatic nerve were inflicted using a Sugita aneurysm clip. The sciatic nerve model rats were randomly divided into two groups (n=9; control group, n=12; WBV group). The rats in the WBV group walked in the cage with a vibratory stimulus (frequency 50 Hz, 20 min/day, 5 times/wk), while those in the control group walked in the cage without any vibratory stimulus. We used heat stimulation-induced sensory threshold and lumbar magnetic stimulation-induced motor-evoked potentials (MEPs) to measure the sensory and motor nerve components, respectively. Further, morphological measurements, bilateral hind-limb dimension, bilateral gastrocnemius dimension, and weight were evaluated. Consequently, there were no significant differences in the sensory threshold at the injury side between the control and WBV groups. However, at 4 and 6 weeks postoperatively, MEPs latencies in the WBV group were significantly shorter than those in the control group. Furthermore, both sides of the hind-limb dimension at 6 weeks postoperatively, the left side of the gastrocnemius dimension, and both sides of the gastrocnemius weight significantly increased. In conclusion, WBV especially accelerates the functional recovery of motor nerve components in sciatic nerve-crush injury model rats.</p>\",\"PeriodicalId\":15771,\"journal\":{\"name\":\"Journal of Exercise Rehabilitation\",\"volume\":\"19 3\",\"pages\":\"149-162\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/6f/jer-19-3-149.PMC10331141.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Exercise Rehabilitation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12965/jer.2346178.089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REHABILITATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Exercise Rehabilitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12965/jer.2346178.089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REHABILITATION","Score":null,"Total":0}
Whole body vibration accelerates the functional recovery of motor nerve components in sciatic nerve-crush injury model rats.
This study aimed to investigate the effect of whole body vibration (WBV) on the sensory and motor nerve components with sciatic nerve injury model rats. Surgery was performed on 21 female Wister rats (6-8 weeks) under intraperitoneal anesthesia. The nerve-crush injuries for the left sciatic nerve were inflicted using a Sugita aneurysm clip. The sciatic nerve model rats were randomly divided into two groups (n=9; control group, n=12; WBV group). The rats in the WBV group walked in the cage with a vibratory stimulus (frequency 50 Hz, 20 min/day, 5 times/wk), while those in the control group walked in the cage without any vibratory stimulus. We used heat stimulation-induced sensory threshold and lumbar magnetic stimulation-induced motor-evoked potentials (MEPs) to measure the sensory and motor nerve components, respectively. Further, morphological measurements, bilateral hind-limb dimension, bilateral gastrocnemius dimension, and weight were evaluated. Consequently, there were no significant differences in the sensory threshold at the injury side between the control and WBV groups. However, at 4 and 6 weeks postoperatively, MEPs latencies in the WBV group were significantly shorter than those in the control group. Furthermore, both sides of the hind-limb dimension at 6 weeks postoperatively, the left side of the gastrocnemius dimension, and both sides of the gastrocnemius weight significantly increased. In conclusion, WBV especially accelerates the functional recovery of motor nerve components in sciatic nerve-crush injury model rats.
期刊介绍:
The Journal of Exercise Rehabilitation is the official journal of the Korean Society of Exercise Rehabilitation, and is published six times a year. Supplementary issues may be published. Its official abbreviation is "J Exerc Rehabil". It was launched in 2005. The title of the first volume was Journal of the Korean Society of Exercise Rehabilitation (pISSN 1976-6319). The journal title was changed to Journal of Exercise Rehabilitation from Volume 9 Number 2, 2013. The effects of exercise rehabilitation are very broad and in some cases exercise rehabilitation has different treatment areas than traditional rehabilitation. Exercise rehabilitation can be presented as a solution to new diseases in modern society and it can replace traditional medicine in economically disadvantaged areas. Exercise rehabilitation is very effective in overcoming metabolic diseases and also has no side effects. Furthermore, exercise rehabilitation shows new possibility for neuropsychiatric diseases, such as depression, autism, attention deficit hyperactivity disorder, schizophrenia, etc. The purpose of the Journal of Exercise Rehabilitation is to identify the effects of exercise rehabilitation on a variety of diseases and to identify mechanisms for exercise rehabilitation treatment. The Journal of Exercise Rehabilitation aims to serve as an intermediary for objective and scientific validation on the effects of exercise rehabilitation worldwide. The types of manuscripts include research articles, review articles, and articles invited by the Editorial Board. The Journal of Exercise Rehabilitation contains 6 sections: Basic research on exercise rehabilitation, Clinical research on exercise rehabilitation, Exercise rehabilitation pedagogy, Exercise rehabilitation education, Exercise rehabilitation psychology, and Exercise rehabilitation welfare.