表型可塑性-替代转录程序驱动治疗耐药前列腺癌。

Q4 Biochemistry, Genetics and Molecular Biology Critical Reviews in Oncogenesis Pub Date : 2022-01-01 DOI:10.1615/CritRevOncog.2022043096
Jagpreet Singh Nanda, Praveen Koganti, Graziela Perri, Leigh Ellis
{"title":"表型可塑性-替代转录程序驱动治疗耐药前列腺癌。","authors":"Jagpreet Singh Nanda,&nbsp;Praveen Koganti,&nbsp;Graziela Perri,&nbsp;Leigh Ellis","doi":"10.1615/CritRevOncog.2022043096","DOIUrl":null,"url":null,"abstract":"<p><p>Androgen deprivation therapy (ADT) that antagonizes androgen receptor (AR) signaling has made significant increases to overall survival of prostate cancer patients. However, ADT is not curative, and patients eventually progress to castration resistant disease (CRPC). It has become evident that a subset of prostate cancers acquire ADT resistance through mechanisms independent of AR alteration or reprogramming of AR signaling. This approximately involves a quarter of prostate cancers progressing on ADT. Collectively, these tumors evolve via phenotypic plasticity and display the activation of developmental and stemness gene signatures as well as transitional programs including an epithelial-mesenchymal phenotype. Currently, no successful treatments exist for prostate cancer patients to inhibit or reverse prostate tumor progression that utilizes mechanisms of epi-plasticity. This overview will discuss epigenetic mechanisms that mediate phenotypic plasticity and the potential for targeting the epigenome to create a novel direction for combination strategies involving epigenetic therapy to provide durable response.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353263/pdf/nihms-1904403.pdf","citationCount":"1","resultStr":"{\"title\":\"Phenotypic Plasticity - Alternate Transcriptional Programs Driving Treatment Resistant Prostate Cancer.\",\"authors\":\"Jagpreet Singh Nanda,&nbsp;Praveen Koganti,&nbsp;Graziela Perri,&nbsp;Leigh Ellis\",\"doi\":\"10.1615/CritRevOncog.2022043096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Androgen deprivation therapy (ADT) that antagonizes androgen receptor (AR) signaling has made significant increases to overall survival of prostate cancer patients. However, ADT is not curative, and patients eventually progress to castration resistant disease (CRPC). It has become evident that a subset of prostate cancers acquire ADT resistance through mechanisms independent of AR alteration or reprogramming of AR signaling. This approximately involves a quarter of prostate cancers progressing on ADT. Collectively, these tumors evolve via phenotypic plasticity and display the activation of developmental and stemness gene signatures as well as transitional programs including an epithelial-mesenchymal phenotype. Currently, no successful treatments exist for prostate cancer patients to inhibit or reverse prostate tumor progression that utilizes mechanisms of epi-plasticity. This overview will discuss epigenetic mechanisms that mediate phenotypic plasticity and the potential for targeting the epigenome to create a novel direction for combination strategies involving epigenetic therapy to provide durable response.</p>\",\"PeriodicalId\":35617,\"journal\":{\"name\":\"Critical Reviews in Oncogenesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353263/pdf/nihms-1904403.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Oncogenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevOncog.2022043096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Oncogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevOncog.2022043096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

雄激素剥夺疗法(ADT)拮抗雄激素受体(AR)信号,显著提高前列腺癌患者的总生存率。然而,ADT不能治愈,患者最终发展为去势抵抗性疾病(CRPC)。很明显,一部分前列腺癌通过独立于AR改变或AR信号重编程的机制获得ADT耐药性。大约有四分之一的前列腺癌在ADT治疗后进展。总的来说,这些肿瘤通过表型可塑性进化,并表现出发育和干性基因特征的激活以及包括上皮-间充质表型在内的过渡程序。目前,尚无成功的前列腺癌患者利用上皮可塑性机制抑制或逆转前列腺肿瘤进展的治疗方法。本综述将讨论介导表型可塑性的表观遗传机制,以及靶向表观基因组的潜力,为涉及表观遗传治疗的联合策略创造新的方向,以提供持久的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phenotypic Plasticity - Alternate Transcriptional Programs Driving Treatment Resistant Prostate Cancer.

Androgen deprivation therapy (ADT) that antagonizes androgen receptor (AR) signaling has made significant increases to overall survival of prostate cancer patients. However, ADT is not curative, and patients eventually progress to castration resistant disease (CRPC). It has become evident that a subset of prostate cancers acquire ADT resistance through mechanisms independent of AR alteration or reprogramming of AR signaling. This approximately involves a quarter of prostate cancers progressing on ADT. Collectively, these tumors evolve via phenotypic plasticity and display the activation of developmental and stemness gene signatures as well as transitional programs including an epithelial-mesenchymal phenotype. Currently, no successful treatments exist for prostate cancer patients to inhibit or reverse prostate tumor progression that utilizes mechanisms of epi-plasticity. This overview will discuss epigenetic mechanisms that mediate phenotypic plasticity and the potential for targeting the epigenome to create a novel direction for combination strategies involving epigenetic therapy to provide durable response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Oncogenesis
Critical Reviews in Oncogenesis Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
1.70
自引率
0.00%
发文量
17
期刊介绍: The journal is dedicated to extensive reviews, minireviews, and special theme issues on topics of current interest in basic and patient-oriented cancer research. The study of systems biology of cancer with its potential for molecular level diagnostics and treatment implies competence across the sciences and an increasing necessity for cancer researchers to understand both the technology and medicine. The journal allows readers to adapt a better understanding of various fields of molecular oncology. We welcome articles on basic biological mechanisms relevant to cancer such as DNA repair, cell cycle, apoptosis, angiogenesis, tumor immunology, etc.
期刊最新文献
Preface: Artificial Intelligence and the Revolution of Oncological Imaging. Radiomics and Artificial Intelligence in Renal Lesion Assessment. Convolutional Neural Networks for Glioma Segmentation and Prognosis: A Systematic Review. Disparities in Electronic Cigarette Use: A Narrative Review. Preface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1