进化计算兽皮书的启示

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2023-11-01 DOI:10.1162/artl_a_00402
Felipe Campelo;Claus Aranha
{"title":"进化计算兽皮书的启示","authors":"Felipe Campelo;Claus Aranha","doi":"10.1162/artl_a_00402","DOIUrl":null,"url":null,"abstract":"The field of metaheuristics has a long history of finding inspiration in natural systems, starting from evolution strategies, genetic algorithms, and ant colony optimization in the second half of the 20th century. In the last decades, however, the field has experienced an explosion of metaphor-centered methods claiming to be inspired by increasingly absurd natural (and even supernatural) phenomena—several different types of birds, mammals, fish and invertebrates, soccer and volleyball, reincarnation, zombies, and gods. Although metaphors can be powerful inspiration tools, the emergence of hundreds of barely discernible algorithmic variants under different labels and nomenclatures has been counterproductive to the scientific progress of the field, as it neither improves our ability to understand and simulate biological systems nor contributes generalizable knowledge or design principles for global optimization approaches. In this article we discuss some of the possible causes of this trend, its negative consequences for the field, and some efforts aimed at moving the area of metaheuristics toward a better balance between inspiration and scientific soundness.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 4","pages":"421-432"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lessons from the Evolutionary Computation Bestiary\",\"authors\":\"Felipe Campelo;Claus Aranha\",\"doi\":\"10.1162/artl_a_00402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of metaheuristics has a long history of finding inspiration in natural systems, starting from evolution strategies, genetic algorithms, and ant colony optimization in the second half of the 20th century. In the last decades, however, the field has experienced an explosion of metaphor-centered methods claiming to be inspired by increasingly absurd natural (and even supernatural) phenomena—several different types of birds, mammals, fish and invertebrates, soccer and volleyball, reincarnation, zombies, and gods. Although metaphors can be powerful inspiration tools, the emergence of hundreds of barely discernible algorithmic variants under different labels and nomenclatures has been counterproductive to the scientific progress of the field, as it neither improves our ability to understand and simulate biological systems nor contributes generalizable knowledge or design principles for global optimization approaches. In this article we discuss some of the possible causes of this trend, its negative consequences for the field, and some efforts aimed at moving the area of metaheuristics toward a better balance between inspiration and scientific soundness.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"29 4\",\"pages\":\"421-432\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508342/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508342/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

从 20 世纪下半叶的进化策略、遗传算法和蚁群优化开始,元启发式算法领域在自然系统中寻找灵感的历史由来已久。然而,在过去的几十年里,该领域出现了以隐喻为中心的方法,这些方法声称受到越来越荒诞的自然(甚至超自然)现象的启发--各种不同类型的鸟类、哺乳动物、鱼类和无脊椎动物、足球和排球、轮回、僵尸和神灵。虽然隐喻可以成为强大的灵感工具,但在不同的标签和术语下出现的数百种几乎无法辨别的算法变体,对该领域的科学进步起到了反作用,因为它既没有提高我们理解和模拟生物系统的能力,也没有为全局优化方法贡献可推广的知识或设计原则。在这篇文章中,我们将讨论这一趋势的一些可能原因、其对该领域的负面影响,以及一些旨在使元启发式算法领域在灵感和科学合理性之间取得更好平衡的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lessons from the Evolutionary Computation Bestiary
The field of metaheuristics has a long history of finding inspiration in natural systems, starting from evolution strategies, genetic algorithms, and ant colony optimization in the second half of the 20th century. In the last decades, however, the field has experienced an explosion of metaphor-centered methods claiming to be inspired by increasingly absurd natural (and even supernatural) phenomena—several different types of birds, mammals, fish and invertebrates, soccer and volleyball, reincarnation, zombies, and gods. Although metaphors can be powerful inspiration tools, the emergence of hundreds of barely discernible algorithmic variants under different labels and nomenclatures has been counterproductive to the scientific progress of the field, as it neither improves our ability to understand and simulate biological systems nor contributes generalizable knowledge or design principles for global optimization approaches. In this article we discuss some of the possible causes of this trend, its negative consequences for the field, and some efforts aimed at moving the area of metaheuristics toward a better balance between inspiration and scientific soundness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders. Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. Investigating the Limits of Familiarity-Based Navigation. Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1