中脑星形胶质细胞源性神经营养因子对人牙龈成纤维细胞炎症反应的影响。

IF 1.8 4区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE European Journal of Oral Sciences Pub Date : 2023-07-17 DOI:10.1111/eos.12945
Lei Gong, Jie Dong, Kai Huang, Keqing Pan, Shengzhi Wang, Hao Liu
{"title":"中脑星形胶质细胞源性神经营养因子对人牙龈成纤维细胞炎症反应的影响。","authors":"Lei Gong,&nbsp;Jie Dong,&nbsp;Kai Huang,&nbsp;Keqing Pan,&nbsp;Shengzhi Wang,&nbsp;Hao Liu","doi":"10.1111/eos.12945","DOIUrl":null,"url":null,"abstract":"<p>Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a unique member of the neurotrophic factor family residing in the endoplasmic reticulum, where it functions as a stress response protein maintaining endoplasmic reticulum homeostasis, in addition to being secreted extracellularly as a neurotrophic factor to bind with receptors to initiate intracellular signal transduction pathways. Interestingly, MANF has shown an important protective role in the inflammatory response of many diseases. In neural stem cells, pancreatic β cells, and retinal cells, MANF can inhibit the inflammatory response, modulate the immune response, and promote tissue repair. However, the role of MANF in the periodontal inflammatory response remains unclear. In the present study, we used lipopolysaccharide (LPS) from <i>Porphyromonas gingivalis</i> (Pg) to establish a Pg-LPS-stimulated periodontal inflammatory model in human gingival fibroblasts cells (HGF-1) to investigate the role of MANF in vitro. We found that MANF could inhibit pro-inflammatory cytokine secretion, alleviate the endoplasmic reticulum stress response, promote cell survival, and inhibit cell apoptosis. Therefore, MANF might be a novel promising target for the treatment of periodontitis.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of mesencephalic astrocyte-derived neurotrophic factor on the inflammatory response in human gingival fibroblasts cells\",\"authors\":\"Lei Gong,&nbsp;Jie Dong,&nbsp;Kai Huang,&nbsp;Keqing Pan,&nbsp;Shengzhi Wang,&nbsp;Hao Liu\",\"doi\":\"10.1111/eos.12945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a unique member of the neurotrophic factor family residing in the endoplasmic reticulum, where it functions as a stress response protein maintaining endoplasmic reticulum homeostasis, in addition to being secreted extracellularly as a neurotrophic factor to bind with receptors to initiate intracellular signal transduction pathways. Interestingly, MANF has shown an important protective role in the inflammatory response of many diseases. In neural stem cells, pancreatic β cells, and retinal cells, MANF can inhibit the inflammatory response, modulate the immune response, and promote tissue repair. However, the role of MANF in the periodontal inflammatory response remains unclear. In the present study, we used lipopolysaccharide (LPS) from <i>Porphyromonas gingivalis</i> (Pg) to establish a Pg-LPS-stimulated periodontal inflammatory model in human gingival fibroblasts cells (HGF-1) to investigate the role of MANF in vitro. We found that MANF could inhibit pro-inflammatory cytokine secretion, alleviate the endoplasmic reticulum stress response, promote cell survival, and inhibit cell apoptosis. Therefore, MANF might be a novel promising target for the treatment of periodontitis.</p>\",\"PeriodicalId\":11983,\"journal\":{\"name\":\"European Journal of Oral Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Oral Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eos.12945\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.12945","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

中脑星形胶质细胞源性神经营养因子(MANF)是存在于内质网中的神经营养因子家族的一个独特成员,在内质网中,它除了作为神经营养因子在细胞外分泌以与受体结合以启动细胞内信号转导途径外,还作为维持内质网稳态的应激反应蛋白发挥作用。有趣的是,MANF在许多疾病的炎症反应中显示出重要的保护作用。在神经干细胞、胰腺β细胞和视网膜细胞中,MANF可以抑制炎症反应,调节免疫反应,促进组织修复。然而,MANF在牙周炎症反应中的作用尚不清楚。在本研究中,我们使用牙龈卟啉单胞菌(Pg)的脂多糖(LPS)在人牙龈成纤维细胞(HGF-1)中建立了Pg LPS刺激的牙周炎症模型,以研究MANF在体外的作用。我们发现MANF可以抑制促炎细胞因子的分泌,缓解内质网应激反应,促进细胞存活,抑制细胞凋亡。因此,MANF可能是治疗牙周炎的一个新的有前景的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of mesencephalic astrocyte-derived neurotrophic factor on the inflammatory response in human gingival fibroblasts cells

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a unique member of the neurotrophic factor family residing in the endoplasmic reticulum, where it functions as a stress response protein maintaining endoplasmic reticulum homeostasis, in addition to being secreted extracellularly as a neurotrophic factor to bind with receptors to initiate intracellular signal transduction pathways. Interestingly, MANF has shown an important protective role in the inflammatory response of many diseases. In neural stem cells, pancreatic β cells, and retinal cells, MANF can inhibit the inflammatory response, modulate the immune response, and promote tissue repair. However, the role of MANF in the periodontal inflammatory response remains unclear. In the present study, we used lipopolysaccharide (LPS) from Porphyromonas gingivalis (Pg) to establish a Pg-LPS-stimulated periodontal inflammatory model in human gingival fibroblasts cells (HGF-1) to investigate the role of MANF in vitro. We found that MANF could inhibit pro-inflammatory cytokine secretion, alleviate the endoplasmic reticulum stress response, promote cell survival, and inhibit cell apoptosis. Therefore, MANF might be a novel promising target for the treatment of periodontitis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Oral Sciences
European Journal of Oral Sciences 医学-牙科与口腔外科
CiteScore
3.50
自引率
5.30%
发文量
61
审稿时长
2 months
期刊介绍: The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication. The journal is published bimonthly.
期刊最新文献
Bond strength of resin-based restorative materials to fast-setting calcium silicate cement using different resin adhesive systems. Different adhesive approaches for the bonding of a new universal resin cement to a disilicate glass-ceramic. Psychological resilience in patients with primary Sjögren's syndrome: effect of involvement of major salivary and lacrimal glands. Effect of propolis added to single-bottle adhesives on water permeation through the hybrid layer. Three-dimensional finite element analysis of the impact of access cavity preparation on first molar fracture resistance: A scoping review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1