{"title":"封闭管内口腔拭子可视化基因分型分析,巢式侵入性反应辅助金纳米颗粒探针","authors":"Yijun Li, Wei Wei, Yi Ma, Jingwen Shan, Yanan Chu, LiKun Zhang, Danni Liu, Xueping Ma, Guohua Zhou, Haiping Wu","doi":"10.1049/nbt2.12123","DOIUrl":null,"url":null,"abstract":"<p>Single nucleotide polymorphism (SNP) typing is crucial for drug dosage and disease progression. Therefore, a simple and convenient genotyping assay is essential for personalised medicine. Herein, we developed a non-invasive, closed-tube, and visualised method for genotyping. In this method, oral swabs were lysed to directly perform PCR coupled with nested invasive reaction and visualisation based on gold nanoparticle probes in a closed tube. The strategy for genotyping assay depends on the single base recognition property of invasive reaction. This assay allowed quick and simple sample preparation and the detection of 25 copies/μL of <i>CYP2C19*2</i> and 100 copies/μL of <i>CYP2C19*3</i> within 90 min. Further, 20 oral swab samples for <i>CYP2C19*2</i> and <i>CYP2C19*3</i> were correctly typed, which agreed with pyrosequencing, indicating that this method has great potential for SNP typing in source-limited regions to guide personalised medicine.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 3","pages":"281-288"},"PeriodicalIF":3.8000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12123","citationCount":"0","resultStr":"{\"title\":\"Visualised genotyping assay with oral swabs in a closed tube by nested invasive reaction assisted with gold nanoparticle probes\",\"authors\":\"Yijun Li, Wei Wei, Yi Ma, Jingwen Shan, Yanan Chu, LiKun Zhang, Danni Liu, Xueping Ma, Guohua Zhou, Haiping Wu\",\"doi\":\"10.1049/nbt2.12123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single nucleotide polymorphism (SNP) typing is crucial for drug dosage and disease progression. Therefore, a simple and convenient genotyping assay is essential for personalised medicine. Herein, we developed a non-invasive, closed-tube, and visualised method for genotyping. In this method, oral swabs were lysed to directly perform PCR coupled with nested invasive reaction and visualisation based on gold nanoparticle probes in a closed tube. The strategy for genotyping assay depends on the single base recognition property of invasive reaction. This assay allowed quick and simple sample preparation and the detection of 25 copies/μL of <i>CYP2C19*2</i> and 100 copies/μL of <i>CYP2C19*3</i> within 90 min. Further, 20 oral swab samples for <i>CYP2C19*2</i> and <i>CYP2C19*3</i> were correctly typed, which agreed with pyrosequencing, indicating that this method has great potential for SNP typing in source-limited regions to guide personalised medicine.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"17 3\",\"pages\":\"281-288\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12123\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12123\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12123","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Visualised genotyping assay with oral swabs in a closed tube by nested invasive reaction assisted with gold nanoparticle probes
Single nucleotide polymorphism (SNP) typing is crucial for drug dosage and disease progression. Therefore, a simple and convenient genotyping assay is essential for personalised medicine. Herein, we developed a non-invasive, closed-tube, and visualised method for genotyping. In this method, oral swabs were lysed to directly perform PCR coupled with nested invasive reaction and visualisation based on gold nanoparticle probes in a closed tube. The strategy for genotyping assay depends on the single base recognition property of invasive reaction. This assay allowed quick and simple sample preparation and the detection of 25 copies/μL of CYP2C19*2 and 100 copies/μL of CYP2C19*3 within 90 min. Further, 20 oral swab samples for CYP2C19*2 and CYP2C19*3 were correctly typed, which agreed with pyrosequencing, indicating that this method has great potential for SNP typing in source-limited regions to guide personalised medicine.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf