通过优化的深度学习模型从感觉运动大脑活动直接重建语音。

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of neural engineering Pub Date : 2023-09-20 DOI:10.1088/1741-2552/ace8be
Julia Berezutskaya, Zachary V Freudenburg, Mariska J Vansteensel, Erik J Aarnoutse, Nick F Ramsey, Marcel A J van Gerven
{"title":"通过优化的深度学习模型从感觉运动大脑活动直接重建语音。","authors":"Julia Berezutskaya, Zachary V Freudenburg, Mariska J Vansteensel, Erik J Aarnoutse, Nick F Ramsey, Marcel A J van Gerven","doi":"10.1088/1741-2552/ace8be","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Development of brain-computer interface (BCI) technology is key for enabling communication in individuals who have lost the faculty of speech due to severe motor paralysis. A BCI control strategy that is gaining attention employs speech decoding from neural data. Recent studies have shown that a combination of direct neural recordings and advanced computational models can provide promising results. Understanding which decoding strategies deliver best and directly applicable results is crucial for advancing the field.<i>Approach.</i>In this paper, we optimized and validated a decoding approach based on speech reconstruction directly from high-density electrocorticography recordings from sensorimotor cortex during a speech production task.<i>Main results.</i>We show that (1) dedicated machine learning optimization of reconstruction models is key for achieving the best reconstruction performance; (2) individual word decoding in reconstructed speech achieves 92%-100% accuracy (chance level is 8%); (3) direct reconstruction from sensorimotor brain activity produces intelligible speech.<i>Significance.</i>These results underline the need for model optimization in achieving best speech decoding results and highlight the potential that reconstruction-based speech decoding from sensorimotor cortex can offer for development of next-generation BCI technology for communication.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510111/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models.\",\"authors\":\"Julia Berezutskaya, Zachary V Freudenburg, Mariska J Vansteensel, Erik J Aarnoutse, Nick F Ramsey, Marcel A J van Gerven\",\"doi\":\"10.1088/1741-2552/ace8be\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Development of brain-computer interface (BCI) technology is key for enabling communication in individuals who have lost the faculty of speech due to severe motor paralysis. A BCI control strategy that is gaining attention employs speech decoding from neural data. Recent studies have shown that a combination of direct neural recordings and advanced computational models can provide promising results. Understanding which decoding strategies deliver best and directly applicable results is crucial for advancing the field.<i>Approach.</i>In this paper, we optimized and validated a decoding approach based on speech reconstruction directly from high-density electrocorticography recordings from sensorimotor cortex during a speech production task.<i>Main results.</i>We show that (1) dedicated machine learning optimization of reconstruction models is key for achieving the best reconstruction performance; (2) individual word decoding in reconstructed speech achieves 92%-100% accuracy (chance level is 8%); (3) direct reconstruction from sensorimotor brain activity produces intelligible speech.<i>Significance.</i>These results underline the need for model optimization in achieving best speech decoding results and highlight the potential that reconstruction-based speech decoding from sensorimotor cortex can offer for development of next-generation BCI technology for communication.</p>\",\"PeriodicalId\":16753,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ace8be\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ace8be","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:脑机接口(BCI)技术的发展是使因严重运动麻痹而丧失语言能力的人能够进行交流的关键。一种越来越受关注的脑机接口控制策略采用了来自神经数据的语音解码。最近的研究表明,直接神经记录和高级计算模型的结合可以提供有希望的结果。了解哪些解码策略可以提供最佳且直接适用的结果,对于推进该领域至关重要。方法。在本文中,我们优化并验证了一种基于语音重建的解码方法,该方法直接从语音产生任务中感觉运动皮层的高密度皮层电图记录中重建。主要结果。我们证明:(1)重建模型的专用机器学习优化是实现最佳重建性能的关键;(2) 重构语音中的单个单词解码准确率达到92%-100%(概率水平为8%);(3) 根据感觉运动大脑活动的直接重建产生可理解的语音。意义。这些结果强调了在实现最佳语音解码结果方面进行模型优化的必要性,并强调了基于重建的感觉运动皮层语音解码可以为下一代脑机接口通信技术的发展提供的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models.

Objective.Development of brain-computer interface (BCI) technology is key for enabling communication in individuals who have lost the faculty of speech due to severe motor paralysis. A BCI control strategy that is gaining attention employs speech decoding from neural data. Recent studies have shown that a combination of direct neural recordings and advanced computational models can provide promising results. Understanding which decoding strategies deliver best and directly applicable results is crucial for advancing the field.Approach.In this paper, we optimized and validated a decoding approach based on speech reconstruction directly from high-density electrocorticography recordings from sensorimotor cortex during a speech production task.Main results.We show that (1) dedicated machine learning optimization of reconstruction models is key for achieving the best reconstruction performance; (2) individual word decoding in reconstructed speech achieves 92%-100% accuracy (chance level is 8%); (3) direct reconstruction from sensorimotor brain activity produces intelligible speech.Significance.These results underline the need for model optimization in achieving best speech decoding results and highlight the potential that reconstruction-based speech decoding from sensorimotor cortex can offer for development of next-generation BCI technology for communication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neural engineering
Journal of neural engineering 工程技术-工程:生物医学
CiteScore
7.80
自引率
12.50%
发文量
319
审稿时长
4.2 months
期刊介绍: The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels. The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.
期刊最新文献
Building consensus on clinical outcome assessments for BCI devices. A summary of the 10th BCI society meeting 2023 workshop. o-CLEAN: a novel multi-stage algorithm for the ocular artifacts' correction from EEG data in out-of-the-lab applications. PDMS/CNT electrodes with bioamplifier for practical in-the-ear and conventional biosignal recordings. DOCTer: a novel EEG-based diagnosis framework for disorders of consciousness. I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1