Alberico Sabbadini, Mostafa A Atalla, Michaël Wiertlewski
{"title":"非对称振动软机器人的简单快速运动。","authors":"Alberico Sabbadini, Mostafa A Atalla, Michaël Wiertlewski","doi":"10.1089/soro.2022.0209","DOIUrl":null,"url":null,"abstract":"<p><p>To be fully integrated into the activities of our daily lives, robots need to be capable of traversing unstructured environments and interacting safely with their surroundings. Soft robots are perfect candidates since they can adapt to their surroundings through passive material compliance, rather than relying on complex control. However, the same compliance hinders the generation of propelling forces, and current approaches face a trade-off between traveling speed, action range, and control complexity. We overcome this trade-off by developing a locomotion mechanism based on the synergistic interaction between symmetric vibrations, elasticity, and asymmetric morphology. We then realize a rapid soft locomotor using inexpensive off-the-shelf components and requiring only elementary actuation and control. A single robotic unit can travel at speeds up to 100 mm/s when tethered and 35 mm/s when untethered. We derive a model that predicts the speed of the robot as a function of several design parameters and physical properties, highlighting the role of geometric asymmetries in the resulting anisotropic motion. Moreover, these elementary units can be added together to create more complex behaviors. By adding 2 units in parallel, the assembly can locomote and be steered following nonholonomic constraints. Our approach opens the door to a new class of low-cost soft robots that can travel fast and far with elementary fabrication and control, and which can be combined to achieve complex functions without compromising their essential simplicity.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1199-1208"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and Fast Locomotion of Vibrating Asymmetric Soft Robots.\",\"authors\":\"Alberico Sabbadini, Mostafa A Atalla, Michaël Wiertlewski\",\"doi\":\"10.1089/soro.2022.0209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To be fully integrated into the activities of our daily lives, robots need to be capable of traversing unstructured environments and interacting safely with their surroundings. Soft robots are perfect candidates since they can adapt to their surroundings through passive material compliance, rather than relying on complex control. However, the same compliance hinders the generation of propelling forces, and current approaches face a trade-off between traveling speed, action range, and control complexity. We overcome this trade-off by developing a locomotion mechanism based on the synergistic interaction between symmetric vibrations, elasticity, and asymmetric morphology. We then realize a rapid soft locomotor using inexpensive off-the-shelf components and requiring only elementary actuation and control. A single robotic unit can travel at speeds up to 100 mm/s when tethered and 35 mm/s when untethered. We derive a model that predicts the speed of the robot as a function of several design parameters and physical properties, highlighting the role of geometric asymmetries in the resulting anisotropic motion. Moreover, these elementary units can be added together to create more complex behaviors. By adding 2 units in parallel, the assembly can locomote and be steered following nonholonomic constraints. Our approach opens the door to a new class of low-cost soft robots that can travel fast and far with elementary fabrication and control, and which can be combined to achieve complex functions without compromising their essential simplicity.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\" \",\"pages\":\"1199-1208\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0209\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0209","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Simple and Fast Locomotion of Vibrating Asymmetric Soft Robots.
To be fully integrated into the activities of our daily lives, robots need to be capable of traversing unstructured environments and interacting safely with their surroundings. Soft robots are perfect candidates since they can adapt to their surroundings through passive material compliance, rather than relying on complex control. However, the same compliance hinders the generation of propelling forces, and current approaches face a trade-off between traveling speed, action range, and control complexity. We overcome this trade-off by developing a locomotion mechanism based on the synergistic interaction between symmetric vibrations, elasticity, and asymmetric morphology. We then realize a rapid soft locomotor using inexpensive off-the-shelf components and requiring only elementary actuation and control. A single robotic unit can travel at speeds up to 100 mm/s when tethered and 35 mm/s when untethered. We derive a model that predicts the speed of the robot as a function of several design parameters and physical properties, highlighting the role of geometric asymmetries in the resulting anisotropic motion. Moreover, these elementary units can be added together to create more complex behaviors. By adding 2 units in parallel, the assembly can locomote and be steered following nonholonomic constraints. Our approach opens the door to a new class of low-cost soft robots that can travel fast and far with elementary fabrication and control, and which can be combined to achieve complex functions without compromising their essential simplicity.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.