Panobinostat通过增加孕酮受体和丝裂原诱导基因6增强黄体酮对子宫内膜癌的生长抑制作用。

IF 3 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Hormones & Cancer Pub Date : 2017-08-01 DOI:10.1007/s12672-017-0295-4
Hirofumi Ando, Tsutomu Miyamoto, Hiroyasu Kashima, Shotaro Higuchi, Koichi Ida, David Hamisi Mvunta, Tanri Shiozawa
{"title":"Panobinostat通过增加孕酮受体和丝裂原诱导基因6增强黄体酮对子宫内膜癌的生长抑制作用。","authors":"Hirofumi Ando,&nbsp;Tsutomu Miyamoto,&nbsp;Hiroyasu Kashima,&nbsp;Shotaro Higuchi,&nbsp;Koichi Ida,&nbsp;David Hamisi Mvunta,&nbsp;Tanri Shiozawa","doi":"10.1007/s12672-017-0295-4","DOIUrl":null,"url":null,"abstract":"<p><p>Although progestin has been used to treat endometrial hyperplasia and endometrial carcinoma (EC), its therapeutic efficacy is limited. In order to improve this, the underlining mechanisms of the effects of progestin need to be elucidated in more detail. In the present study, we examined the involvement of mitogen-inducible gene-6 (MIG6), a negative regulator of the EGF receptor, in the progestin-mediated growth suppression of endometrial epithelia. The immunohistochemical expression of MIG6 was elevated in the early to mid-secretory phases of normal endometrium and also with endometrial hyperplasia after medroxyprogesterone acetate (MPA) therapy. The addition of progesterone (P4) to progesterone receptor (PR)-positive EC cells reduced the viability and induced MIG6 messenger RNA (mRNA) and protein expression. The silencing of MIG6 using siRNA eliminated the P4-mediated reduction of EC cell viability, indicating that MIG6 is an essential downstream component of PR-mediated growth suppression. In order to enhance PR-driven signals, we examined the effects of histone deacetylase (HDAC) inhibitors because histone acetylation has been shown to increase the expression of PR. The addition of three HDAC inhibitors (panobinostat, LBH589; trichostatin A, TSA; suberoylanilide hydroxamic acid, SAHA) decreased the viability of EC cells and up-regulated the expression of PR and MIG6, and these effects were the strongest with LBH589. The addition of LBH589 and MPA synergistically decreased the viability and increased apoptosis in EC cells. These results indicate that LBH589 has potential as an enhancer of progestin therapy via the up-regulation of PR and MIG6.</p>","PeriodicalId":13060,"journal":{"name":"Hormones & Cancer","volume":"8 4","pages":"257-267"},"PeriodicalIF":3.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12672-017-0295-4","citationCount":"6","resultStr":"{\"title\":\"Panobinostat Enhances Growth Suppressive Effects of Progestin on Endometrial Carcinoma by Increasing Progesterone Receptor and Mitogen-Inducible Gene-6.\",\"authors\":\"Hirofumi Ando,&nbsp;Tsutomu Miyamoto,&nbsp;Hiroyasu Kashima,&nbsp;Shotaro Higuchi,&nbsp;Koichi Ida,&nbsp;David Hamisi Mvunta,&nbsp;Tanri Shiozawa\",\"doi\":\"10.1007/s12672-017-0295-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although progestin has been used to treat endometrial hyperplasia and endometrial carcinoma (EC), its therapeutic efficacy is limited. In order to improve this, the underlining mechanisms of the effects of progestin need to be elucidated in more detail. In the present study, we examined the involvement of mitogen-inducible gene-6 (MIG6), a negative regulator of the EGF receptor, in the progestin-mediated growth suppression of endometrial epithelia. The immunohistochemical expression of MIG6 was elevated in the early to mid-secretory phases of normal endometrium and also with endometrial hyperplasia after medroxyprogesterone acetate (MPA) therapy. The addition of progesterone (P4) to progesterone receptor (PR)-positive EC cells reduced the viability and induced MIG6 messenger RNA (mRNA) and protein expression. The silencing of MIG6 using siRNA eliminated the P4-mediated reduction of EC cell viability, indicating that MIG6 is an essential downstream component of PR-mediated growth suppression. In order to enhance PR-driven signals, we examined the effects of histone deacetylase (HDAC) inhibitors because histone acetylation has been shown to increase the expression of PR. The addition of three HDAC inhibitors (panobinostat, LBH589; trichostatin A, TSA; suberoylanilide hydroxamic acid, SAHA) decreased the viability of EC cells and up-regulated the expression of PR and MIG6, and these effects were the strongest with LBH589. The addition of LBH589 and MPA synergistically decreased the viability and increased apoptosis in EC cells. These results indicate that LBH589 has potential as an enhancer of progestin therapy via the up-regulation of PR and MIG6.</p>\",\"PeriodicalId\":13060,\"journal\":{\"name\":\"Hormones & Cancer\",\"volume\":\"8 4\",\"pages\":\"257-267\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12672-017-0295-4\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormones & Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12672-017-0295-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones & Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-017-0295-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6

摘要

虽然黄体酮已被用于治疗子宫内膜增生和子宫内膜癌(EC),但其治疗效果有限。为了改善这一点,需要更详细地阐明黄体酮作用的主要机制。在本研究中,我们研究了丝裂原诱导基因-6 (MIG6), EGF受体的负调节因子,在孕激素介导的子宫内膜上皮生长抑制中的作用。经醋酸甲孕酮(MPA)治疗后,MIG6的免疫组化表达在正常子宫内膜分泌早期至中期升高,在子宫内膜增生时也升高。在孕激素受体(PR)阳性的EC细胞中添加孕酮(P4)可降低细胞活力,并诱导MIG6信使RNA (mRNA)和蛋白的表达。使用siRNA沉默MIG6消除了p4介导的EC细胞活力降低,表明MIG6是pr介导的生长抑制的重要下游组分。为了增强PR驱动的信号,我们检测了组蛋白去乙酰化酶(HDAC)抑制剂的作用,因为组蛋白乙酰化已被证明可以增加PR的表达。曲古斯汀A, TSA;亚甲基苯胺羟肟酸(SAHA)降低EC细胞活力,上调PR和MIG6的表达,其中LBH589的作用最强。LBH589和MPA的加入可协同降低EC细胞活力,增加凋亡。这些结果表明,LBH589可能通过上调PR和MIG6来增强黄体酮治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Panobinostat Enhances Growth Suppressive Effects of Progestin on Endometrial Carcinoma by Increasing Progesterone Receptor and Mitogen-Inducible Gene-6.

Although progestin has been used to treat endometrial hyperplasia and endometrial carcinoma (EC), its therapeutic efficacy is limited. In order to improve this, the underlining mechanisms of the effects of progestin need to be elucidated in more detail. In the present study, we examined the involvement of mitogen-inducible gene-6 (MIG6), a negative regulator of the EGF receptor, in the progestin-mediated growth suppression of endometrial epithelia. The immunohistochemical expression of MIG6 was elevated in the early to mid-secretory phases of normal endometrium and also with endometrial hyperplasia after medroxyprogesterone acetate (MPA) therapy. The addition of progesterone (P4) to progesterone receptor (PR)-positive EC cells reduced the viability and induced MIG6 messenger RNA (mRNA) and protein expression. The silencing of MIG6 using siRNA eliminated the P4-mediated reduction of EC cell viability, indicating that MIG6 is an essential downstream component of PR-mediated growth suppression. In order to enhance PR-driven signals, we examined the effects of histone deacetylase (HDAC) inhibitors because histone acetylation has been shown to increase the expression of PR. The addition of three HDAC inhibitors (panobinostat, LBH589; trichostatin A, TSA; suberoylanilide hydroxamic acid, SAHA) decreased the viability of EC cells and up-regulated the expression of PR and MIG6, and these effects were the strongest with LBH589. The addition of LBH589 and MPA synergistically decreased the viability and increased apoptosis in EC cells. These results indicate that LBH589 has potential as an enhancer of progestin therapy via the up-regulation of PR and MIG6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hormones & Cancer
Hormones & Cancer ONCOLOGY-ENDOCRINOLOGY & METABOLISM
CiteScore
4.60
自引率
0.00%
发文量
0
期刊介绍: Hormones and Cancer is a unique multidisciplinary translational journal featuring basic science, pre-clinical, epidemiological, and clinical research papers. It covers all aspects of the interface of Endocrinology and Oncology. Thus, the journal covers two main areas of research: Endocrine tumors (benign & malignant tumors of hormone secreting endocrine organs) and the effects of hormones on any type of tumor. We welcome all types of studies related to these fields, but our particular attention is on translational aspects of research. In addition to basic, pre-clinical, and epidemiological studies, we encourage submission of clinical studies including those that comprise small series of tumors in rare endocrine neoplasias and/or negative or confirmatory results provided that they significantly enhance our understanding of endocrine aspects of oncology. The journal does not publish case studies.
期刊最新文献
Welcome from the new Discover Oncology journal : Editorial - 28th December, 2020. Nuclear PDCD4 Expression Defines a Subset of Luminal B-Like Breast Cancers with Good Prognosis. Prevalence of Histological Characteristics of Breast Cancer in Rwanda in Relation to Age and Tumor Stages. The Thyroid Tumor Microenvironment: Potential Targets for Therapeutic Intervention and Prognostication. Outcome of Clinical Genetic Testing in Patients with Features Suggestive for Hereditary Predisposition to PTH-Mediated Hypercalcemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1