{"title":"在酸化的海洋中生存:海胆幼体的酸碱生理学和能量学。","authors":"Marian Y Hu, Meike Stumpp","doi":"10.1152/physiol.00007.2023","DOIUrl":null,"url":null,"abstract":"<p><p>The sea urchin larva has been used by biologists for more than a century to study the development and evolution of animals. Surprisingly, very little information has been generated regarding the physiology of this small planktonic organism. However, in the context of anthropogenic CO<sub>2</sub>-driven ocean acidification (OA), the membrane transport physiology and energetics of this marine model organism have received considerable attention in the past decade. This has led to the discovery of new, exciting physiological systems, including a highly alkaline digestive tract and the calcifying primary mesenchyme cells that generate the larval skeleton. These physiological systems directly relate to the energetics of the organisms when challenged by OA. Here we review the latest membrane transport physiology and energetics in the sea urchin larva, we identify emerging questions, and we point to important future directions in the field of marine physiology in times of rapid climate change.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"38 5","pages":"0"},"PeriodicalIF":5.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surviving in an Acidifying Ocean: Acid-Base Physiology and Energetics of the Sea Urchin Larva.\",\"authors\":\"Marian Y Hu, Meike Stumpp\",\"doi\":\"10.1152/physiol.00007.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sea urchin larva has been used by biologists for more than a century to study the development and evolution of animals. Surprisingly, very little information has been generated regarding the physiology of this small planktonic organism. However, in the context of anthropogenic CO<sub>2</sub>-driven ocean acidification (OA), the membrane transport physiology and energetics of this marine model organism have received considerable attention in the past decade. This has led to the discovery of new, exciting physiological systems, including a highly alkaline digestive tract and the calcifying primary mesenchyme cells that generate the larval skeleton. These physiological systems directly relate to the energetics of the organisms when challenged by OA. Here we review the latest membrane transport physiology and energetics in the sea urchin larva, we identify emerging questions, and we point to important future directions in the field of marine physiology in times of rapid climate change.</p>\",\"PeriodicalId\":49694,\"journal\":{\"name\":\"Physiology\",\"volume\":\"38 5\",\"pages\":\"0\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/physiol.00007.2023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.00007.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Surviving in an Acidifying Ocean: Acid-Base Physiology and Energetics of the Sea Urchin Larva.
The sea urchin larva has been used by biologists for more than a century to study the development and evolution of animals. Surprisingly, very little information has been generated regarding the physiology of this small planktonic organism. However, in the context of anthropogenic CO2-driven ocean acidification (OA), the membrane transport physiology and energetics of this marine model organism have received considerable attention in the past decade. This has led to the discovery of new, exciting physiological systems, including a highly alkaline digestive tract and the calcifying primary mesenchyme cells that generate the larval skeleton. These physiological systems directly relate to the energetics of the organisms when challenged by OA. Here we review the latest membrane transport physiology and energetics in the sea urchin larva, we identify emerging questions, and we point to important future directions in the field of marine physiology in times of rapid climate change.
期刊介绍:
Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.