Sergey N Makaroff, Aapo R Nummenmaa, Gregory M Noetscher, Zhen Qi, Cameron C McIntyre, Clayton S Bingham
{"title":"人类超直接通路轴突膜上沉积的电荷对丘脑底脑深部刺激过程中去极化的影响。","authors":"Sergey N Makaroff, Aapo R Nummenmaa, Gregory M Noetscher, Zhen Qi, Cameron C McIntyre, Clayton S Bingham","doi":"10.1088/1741-2552/ace5de","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The motor hyperdirect pathway (HDP) is a key target in the treatment of Parkinson's disease with deep brain stimulation (DBS). Biophysical models of HDP DBS have been used to explore the mechanisms of stimulation. Built upon finite element method volume conductor solutions, such models are limited by a resolution mismatch, where the volume conductor is modeled at the macro scale, while the neural elements are at the micro scale. New techniques are needed to better integrate volume conductor models with neuron models.<i>Approach.</i>We simulated subthalamic DBS of the human HDP using finely meshed axon models to calculate surface charge deposition on insulting membranes of nonmyelinated axons. We converted the corresponding double layer extracellular problem to a single layer problem and applied the well-conditioned charge-based boundary element fast multipole method (BEM-FMM) with unconstrained numerical spatial resolution. Commonly used simplified estimations of membrane depolarization were compared with more realistic solutions.<i>Main result.</i>Neither centerline potential nor estimates of axon recruitment were impacted by the estimation method used except at axon bifurcations and hemispherical terminations. Local estimates of axon polarization were often much higher at bifurcations and terminations than at any other place along the axon and terminal arbor. Local average estimates of terminal electric field are higher by 10%-20%.<i>Significance</i>. Biophysical models of action potential initiation in the HDP suggest that axon terminations are often the lowest threshold elements for activation. The results of this study reinforce that hypothesis and suggest that this phenomenon is even more pronounced than previously realized.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"20 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542971/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of charges deposited on membranes of human hyperdirect pathway axons on depolarization during subthalamic deep brain stimulation.\",\"authors\":\"Sergey N Makaroff, Aapo R Nummenmaa, Gregory M Noetscher, Zhen Qi, Cameron C McIntyre, Clayton S Bingham\",\"doi\":\"10.1088/1741-2552/ace5de\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>The motor hyperdirect pathway (HDP) is a key target in the treatment of Parkinson's disease with deep brain stimulation (DBS). Biophysical models of HDP DBS have been used to explore the mechanisms of stimulation. Built upon finite element method volume conductor solutions, such models are limited by a resolution mismatch, where the volume conductor is modeled at the macro scale, while the neural elements are at the micro scale. New techniques are needed to better integrate volume conductor models with neuron models.<i>Approach.</i>We simulated subthalamic DBS of the human HDP using finely meshed axon models to calculate surface charge deposition on insulting membranes of nonmyelinated axons. We converted the corresponding double layer extracellular problem to a single layer problem and applied the well-conditioned charge-based boundary element fast multipole method (BEM-FMM) with unconstrained numerical spatial resolution. Commonly used simplified estimations of membrane depolarization were compared with more realistic solutions.<i>Main result.</i>Neither centerline potential nor estimates of axon recruitment were impacted by the estimation method used except at axon bifurcations and hemispherical terminations. Local estimates of axon polarization were often much higher at bifurcations and terminations than at any other place along the axon and terminal arbor. Local average estimates of terminal electric field are higher by 10%-20%.<i>Significance</i>. Biophysical models of action potential initiation in the HDP suggest that axon terminations are often the lowest threshold elements for activation. The results of this study reinforce that hypothesis and suggest that this phenomenon is even more pronounced than previously realized.</p>\",\"PeriodicalId\":16753,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ace5de\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ace5de","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Influence of charges deposited on membranes of human hyperdirect pathway axons on depolarization during subthalamic deep brain stimulation.
Objective.The motor hyperdirect pathway (HDP) is a key target in the treatment of Parkinson's disease with deep brain stimulation (DBS). Biophysical models of HDP DBS have been used to explore the mechanisms of stimulation. Built upon finite element method volume conductor solutions, such models are limited by a resolution mismatch, where the volume conductor is modeled at the macro scale, while the neural elements are at the micro scale. New techniques are needed to better integrate volume conductor models with neuron models.Approach.We simulated subthalamic DBS of the human HDP using finely meshed axon models to calculate surface charge deposition on insulting membranes of nonmyelinated axons. We converted the corresponding double layer extracellular problem to a single layer problem and applied the well-conditioned charge-based boundary element fast multipole method (BEM-FMM) with unconstrained numerical spatial resolution. Commonly used simplified estimations of membrane depolarization were compared with more realistic solutions.Main result.Neither centerline potential nor estimates of axon recruitment were impacted by the estimation method used except at axon bifurcations and hemispherical terminations. Local estimates of axon polarization were often much higher at bifurcations and terminations than at any other place along the axon and terminal arbor. Local average estimates of terminal electric field are higher by 10%-20%.Significance. Biophysical models of action potential initiation in the HDP suggest that axon terminations are often the lowest threshold elements for activation. The results of this study reinforce that hypothesis and suggest that this phenomenon is even more pronounced than previously realized.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.