{"title":"Julia-lythgoe烯烃概述","authors":"Vijayan Varsha, Sankaran Radhika, Gopinathan Anilkumar","doi":"10.2174/1570179420666230510104114","DOIUrl":null,"url":null,"abstract":"<p><p>Julia-Lythgoe olefination (or simply Julia olefination) is an olefination process between phenyl sulfones and aldehydes (or ketones) to give alkenes after alcohol functionalization and reductive elimination using sodium amalgam or SmI2. It is mainly used to synthesize E-alkenes and is a key step in numerous total syntheses of many natural products. This review exclusively deals with the Julia-Lythgoe olefination and concentrates mainly on the applications of this reaction in natural product synthesis covering literature up to 2021.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview of Julia-lythgoe Olefination.\",\"authors\":\"Vijayan Varsha, Sankaran Radhika, Gopinathan Anilkumar\",\"doi\":\"10.2174/1570179420666230510104114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Julia-Lythgoe olefination (or simply Julia olefination) is an olefination process between phenyl sulfones and aldehydes (or ketones) to give alkenes after alcohol functionalization and reductive elimination using sodium amalgam or SmI2. It is mainly used to synthesize E-alkenes and is a key step in numerous total syntheses of many natural products. This review exclusively deals with the Julia-Lythgoe olefination and concentrates mainly on the applications of this reaction in natural product synthesis covering literature up to 2021.</p>\",\"PeriodicalId\":11101,\"journal\":{\"name\":\"Current organic synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current organic synthesis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/1570179420666230510104114\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570179420666230510104114","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Julia-Lythgoe olefination (or simply Julia olefination) is an olefination process between phenyl sulfones and aldehydes (or ketones) to give alkenes after alcohol functionalization and reductive elimination using sodium amalgam or SmI2. It is mainly used to synthesize E-alkenes and is a key step in numerous total syntheses of many natural products. This review exclusively deals with the Julia-Lythgoe olefination and concentrates mainly on the applications of this reaction in natural product synthesis covering literature up to 2021.
期刊介绍:
Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.