{"title":"左旋肉碱通过抗氧化和抗炎途径对X射线致子宫损伤的保护作用。","authors":"Serkan Karacetin, Meryem Akpolat, Zehra Safi Oz, Ayse Ceylan Hamamcioglu","doi":"10.1080/09553002.2023.2158247","DOIUrl":null,"url":null,"abstract":"Abstract Purpose Ionizing radiation causes oxidative stress induced tissue damage as well as a decline in reproduction incidence. The purpose of our study was to evaluate the effects of L-carnitine on radiation-induced uterine injury. Materials and methods Thirty Wistar albino rats were classified into five groups. Physiological saline was administered intraperitoneally to the control group. A single dose of 8.3 Gy whole body X-irradiation was applied to the radiation-1 and radiation-2 groups. These groups were sacrificed on the 6th hour and 4th day, respectively, after irradiation. Radiation-1 + L-carnitine and radiation-2 + L-carnitine groups received a daily dose of 200 mg/kg L-carnitine in addition to the same dose of irradiation. L-carnitine was also applied one day before and four days after irradiation. Results L-carnitine therapy partially blocks the depletion of the deep glands and radiation-induced flattening of the glandular epithelium and endometrial surface. Proinflammatory cytokines such as IL-1β, IL-6 and TNF-α were found to be significantly expressed in the uterus tissue of irradiated mice. In the radiation groups, NFκB and PARP-1 expressions in uterine tissue was significantly increased compared to L-carnitine treated and the control groups. It was observed that the oxidative stress index increased in the radiation groups, but decreased in the L-carnitine applied groups. Conclusions Our findings showed that L-carnitine has a positive effect on radiation-induced uterine damage. L-carnitine may be a potential safe radio protective agent during radiotherapy for pelvic cancer provided the tumor is not protected from radiation damage to the same extent as the normal tissue is. However, prospective clinical trial studies are necessary to understand its efficacy.","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 8","pages":"1217-1227"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective effects of L-carnitine on X irradiation-induced uterus injury via antioxidant and anti-inflammatory pathways.\",\"authors\":\"Serkan Karacetin, Meryem Akpolat, Zehra Safi Oz, Ayse Ceylan Hamamcioglu\",\"doi\":\"10.1080/09553002.2023.2158247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Purpose Ionizing radiation causes oxidative stress induced tissue damage as well as a decline in reproduction incidence. The purpose of our study was to evaluate the effects of L-carnitine on radiation-induced uterine injury. Materials and methods Thirty Wistar albino rats were classified into five groups. Physiological saline was administered intraperitoneally to the control group. A single dose of 8.3 Gy whole body X-irradiation was applied to the radiation-1 and radiation-2 groups. These groups were sacrificed on the 6th hour and 4th day, respectively, after irradiation. Radiation-1 + L-carnitine and radiation-2 + L-carnitine groups received a daily dose of 200 mg/kg L-carnitine in addition to the same dose of irradiation. L-carnitine was also applied one day before and four days after irradiation. Results L-carnitine therapy partially blocks the depletion of the deep glands and radiation-induced flattening of the glandular epithelium and endometrial surface. Proinflammatory cytokines such as IL-1β, IL-6 and TNF-α were found to be significantly expressed in the uterus tissue of irradiated mice. In the radiation groups, NFκB and PARP-1 expressions in uterine tissue was significantly increased compared to L-carnitine treated and the control groups. It was observed that the oxidative stress index increased in the radiation groups, but decreased in the L-carnitine applied groups. Conclusions Our findings showed that L-carnitine has a positive effect on radiation-induced uterine damage. L-carnitine may be a potential safe radio protective agent during radiotherapy for pelvic cancer provided the tumor is not protected from radiation damage to the same extent as the normal tissue is. However, prospective clinical trial studies are necessary to understand its efficacy.\",\"PeriodicalId\":14261,\"journal\":{\"name\":\"International Journal of Radiation Biology\",\"volume\":\"99 8\",\"pages\":\"1217-1227\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Radiation Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/09553002.2023.2158247\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09553002.2023.2158247","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Protective effects of L-carnitine on X irradiation-induced uterus injury via antioxidant and anti-inflammatory pathways.
Abstract Purpose Ionizing radiation causes oxidative stress induced tissue damage as well as a decline in reproduction incidence. The purpose of our study was to evaluate the effects of L-carnitine on radiation-induced uterine injury. Materials and methods Thirty Wistar albino rats were classified into five groups. Physiological saline was administered intraperitoneally to the control group. A single dose of 8.3 Gy whole body X-irradiation was applied to the radiation-1 and radiation-2 groups. These groups were sacrificed on the 6th hour and 4th day, respectively, after irradiation. Radiation-1 + L-carnitine and radiation-2 + L-carnitine groups received a daily dose of 200 mg/kg L-carnitine in addition to the same dose of irradiation. L-carnitine was also applied one day before and four days after irradiation. Results L-carnitine therapy partially blocks the depletion of the deep glands and radiation-induced flattening of the glandular epithelium and endometrial surface. Proinflammatory cytokines such as IL-1β, IL-6 and TNF-α were found to be significantly expressed in the uterus tissue of irradiated mice. In the radiation groups, NFκB and PARP-1 expressions in uterine tissue was significantly increased compared to L-carnitine treated and the control groups. It was observed that the oxidative stress index increased in the radiation groups, but decreased in the L-carnitine applied groups. Conclusions Our findings showed that L-carnitine has a positive effect on radiation-induced uterine damage. L-carnitine may be a potential safe radio protective agent during radiotherapy for pelvic cancer provided the tumor is not protected from radiation damage to the same extent as the normal tissue is. However, prospective clinical trial studies are necessary to understand its efficacy.
期刊介绍:
The International Journal of Radiation Biology publishes original papers, reviews, current topic articles, technical notes/reports, and meeting reports on the effects of ionizing, UV and visible radiation, accelerated particles, electromagnetic fields, ultrasound, heat and related modalities. The focus is on the biological effects of such radiations: from radiation chemistry to the spectrum of responses of living organisms and underlying mechanisms, including genetic abnormalities, repair phenomena, cell death, dose modifying agents and tissue responses. Application of basic studies to medical uses of radiation extends the coverage to practical problems such as physical and chemical adjuvants which improve the effectiveness of radiation in cancer therapy. Assessment of the hazards of low doses of radiation is also considered.