基于cnn的心脏运动提取,生成可变形几何左心室心肌模型。

Roshan Reddy Upendra, Brian Jamison Wentz, Richard Simon, Suzanne M Shontz, Cristian A Linte
{"title":"基于cnn的心脏运动提取,生成可变形几何左心室心肌模型。","authors":"Roshan Reddy Upendra,&nbsp;Brian Jamison Wentz,&nbsp;Richard Simon,&nbsp;Suzanne M Shontz,&nbsp;Cristian A Linte","doi":"10.1007/978-3-030-78710-3_25","DOIUrl":null,"url":null,"abstract":"<p><p>Patient-specific left ventricle (LV) myocardial models have the potential to be used in a variety of clinical scenarios for improved diagnosis and treatment plans. Cine cardiac magnetic resonance (MR) imaging provides high resolution images to reconstruct patient-specific geometric models of the LV myocardium. With the advent of deep learning, accurate segmentation of cardiac chambers from cine cardiac MR images and unsupervised learning for image registration for cardiac motion estimation on a large number of image datasets is attainable. Here, we propose a deep leaning-based framework for the development of patient-specific geometric models of LV myocardium from cine cardiac MR images, using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We use the deformation field estimated from the VoxelMorph-based convolutional neural network (CNN) to propagate the isosurface mesh and volume mesh of the end-diastole (ED) frame to the subsequent frames of the cardiac cycle. We assess the CNN-based propagated models against segmented models at each cardiac phase, as well as models propagated using another traditional nonrigid image registration technique. Additionally, we generate dynamic LV myocardial volume meshes at all phases of the cardiac cycle using the log barrier-based mesh warping (LBWARP) method and compare them with the CNN-propagated volume meshes.</p>","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":"12738 ","pages":"253-263"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198131/pdf/nihms-1899917.pdf","citationCount":"5","resultStr":"{\"title\":\"CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI.\",\"authors\":\"Roshan Reddy Upendra,&nbsp;Brian Jamison Wentz,&nbsp;Richard Simon,&nbsp;Suzanne M Shontz,&nbsp;Cristian A Linte\",\"doi\":\"10.1007/978-3-030-78710-3_25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patient-specific left ventricle (LV) myocardial models have the potential to be used in a variety of clinical scenarios for improved diagnosis and treatment plans. Cine cardiac magnetic resonance (MR) imaging provides high resolution images to reconstruct patient-specific geometric models of the LV myocardium. With the advent of deep learning, accurate segmentation of cardiac chambers from cine cardiac MR images and unsupervised learning for image registration for cardiac motion estimation on a large number of image datasets is attainable. Here, we propose a deep leaning-based framework for the development of patient-specific geometric models of LV myocardium from cine cardiac MR images, using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We use the deformation field estimated from the VoxelMorph-based convolutional neural network (CNN) to propagate the isosurface mesh and volume mesh of the end-diastole (ED) frame to the subsequent frames of the cardiac cycle. We assess the CNN-based propagated models against segmented models at each cardiac phase, as well as models propagated using another traditional nonrigid image registration technique. Additionally, we generate dynamic LV myocardial volume meshes at all phases of the cardiac cycle using the log barrier-based mesh warping (LBWARP) method and compare them with the CNN-propagated volume meshes.</p>\",\"PeriodicalId\":73120,\"journal\":{\"name\":\"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH\",\"volume\":\"12738 \",\"pages\":\"253-263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198131/pdf/nihms-1899917.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-78710-3_25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-78710-3_25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

患者特异性左心室(LV)心肌模型有潜力用于各种临床场景,以改进诊断和治疗计划。心脏磁共振成像(MR)提供高分辨率的图像来重建患者特定的左室心肌几何模型。随着深度学习的出现,从电影心脏MR图像中准确分割心脏腔室,以及在大量图像数据集上进行图像配准以估计心脏运动的无监督学习成为可能。在这里,我们提出了一个基于深度学习的框架,用于从电影心脏MR图像中开发患者特定的左室心肌几何模型,使用自动心脏诊断挑战(ACDC)数据集。我们使用基于voxelmorphs的卷积神经网络(CNN)估计的变形场,将舒张末期(ED)帧的等面网格和体积网格传播到心脏周期的后续帧。我们评估了基于cnn的传播模型与每个心脏阶段的分割模型,以及使用另一种传统的非刚性图像配准技术传播的模型。此外,我们使用基于log barrier的网格扭曲(LBWARP)方法在心脏周期的各个阶段生成动态左室心肌体积网格,并将其与cnn传播的体积网格进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI.

Patient-specific left ventricle (LV) myocardial models have the potential to be used in a variety of clinical scenarios for improved diagnosis and treatment plans. Cine cardiac magnetic resonance (MR) imaging provides high resolution images to reconstruct patient-specific geometric models of the LV myocardium. With the advent of deep learning, accurate segmentation of cardiac chambers from cine cardiac MR images and unsupervised learning for image registration for cardiac motion estimation on a large number of image datasets is attainable. Here, we propose a deep leaning-based framework for the development of patient-specific geometric models of LV myocardium from cine cardiac MR images, using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We use the deformation field estimated from the VoxelMorph-based convolutional neural network (CNN) to propagate the isosurface mesh and volume mesh of the end-diastole (ED) frame to the subsequent frames of the cardiac cycle. We assess the CNN-based propagated models against segmented models at each cardiac phase, as well as models propagated using another traditional nonrigid image registration technique. Additionally, we generate dynamic LV myocardial volume meshes at all phases of the cardiac cycle using the log barrier-based mesh warping (LBWARP) method and compare them with the CNN-propagated volume meshes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Micro-anatomical Model of the Infarcted Left Ventricle Border Zone to Study the Influence of Collagen Undulation. On the possibility of estimating myocardial fiber architecture from cardiac strains. Prototype of a Cardiac MRI Simulator for the Training of Supervised Neural Networks Extraction of volumetric indices from echocardiography: which deep learning solution for clinical use? Automatic Aortic Valve Pathology Detection from 3-Chamber Cine MRI with Spatio-Temporal Attention Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1