{"title":"不同侧踢高度的踢腿运动学差异。","authors":"Yi-Chun Lin, Wen-Tzu Tang, Yi-Chien Peng, Tsun-Te Liu, Wei-Gang Chang, Tsung-Yu Huang, Joseph Hamill","doi":"10.1080/17461391.2023.2213189","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to explore the variation of lower extremity kinematic characteristics when elite taekwondo athletes perform the side-kick on protective gear placed at various heights. Twenty distinguished male national athletes were recruited and were asked to kick targets at three different heights adjusted according to their body height. A three-dimensional (3D) motion capture system was used to collect kinematic data. Kinematic parameters differences in the side-kick at three different heights were analyzed by using a one-way ANOVA (<i>p</i> < .05). The results revealed significant differences in the peak linear velocities of the pelvis, hip, knee, ankle, and centre of gravity of the foot during the leg-lifting phase (<i>p</i> < .05). Significant differences between heights were noted in the maximum angle of pelvis left tilting and hip abduction in both phases. In addition, the maximum angular velocities of pelvis left tilting and hip internal rotation were only different in the leg-lifting phase. This study found that, to kick at a higher target, athletes increase the linear velocities of their pelvis and all lower extremity joints of attacking leg in the leg-lifting phase; however, they only increase rotational variables on the proximal segment at the peak angle of the pelvis (left tilting) and hip (abduction and internal rotation) in the same phase. As an application in actual competitions, according to the opponent's body height, athletes can adjust both linear and rotational velocities of their proximal segements (pelvis and hip) and deliver into distal segements (knee, ankle, foot) linear velocity to perform accurate and rapid kicks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differences in kick-leg kinematics in various side-kick heights.\",\"authors\":\"Yi-Chun Lin, Wen-Tzu Tang, Yi-Chien Peng, Tsun-Te Liu, Wei-Gang Chang, Tsung-Yu Huang, Joseph Hamill\",\"doi\":\"10.1080/17461391.2023.2213189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to explore the variation of lower extremity kinematic characteristics when elite taekwondo athletes perform the side-kick on protective gear placed at various heights. Twenty distinguished male national athletes were recruited and were asked to kick targets at three different heights adjusted according to their body height. A three-dimensional (3D) motion capture system was used to collect kinematic data. Kinematic parameters differences in the side-kick at three different heights were analyzed by using a one-way ANOVA (<i>p</i> < .05). The results revealed significant differences in the peak linear velocities of the pelvis, hip, knee, ankle, and centre of gravity of the foot during the leg-lifting phase (<i>p</i> < .05). Significant differences between heights were noted in the maximum angle of pelvis left tilting and hip abduction in both phases. In addition, the maximum angular velocities of pelvis left tilting and hip internal rotation were only different in the leg-lifting phase. This study found that, to kick at a higher target, athletes increase the linear velocities of their pelvis and all lower extremity joints of attacking leg in the leg-lifting phase; however, they only increase rotational variables on the proximal segment at the peak angle of the pelvis (left tilting) and hip (abduction and internal rotation) in the same phase. As an application in actual competitions, according to the opponent's body height, athletes can adjust both linear and rotational velocities of their proximal segements (pelvis and hip) and deliver into distal segements (knee, ankle, foot) linear velocity to perform accurate and rapid kicks.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17461391.2023.2213189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17461391.2023.2213189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在探讨优秀跆拳道运动员在不同高度的防护装备上进行侧踢时,下肢运动学特征的变化。招募了20名杰出的国家男子运动员,并要求他们根据身高调整三个不同高度的目标。使用三维(3D)运动捕捉系统来收集运动学数据。采用单因素方差分析法分析了三种不同高度侧踢的运动学参数差异(p p
Differences in kick-leg kinematics in various side-kick heights.
This study aims to explore the variation of lower extremity kinematic characteristics when elite taekwondo athletes perform the side-kick on protective gear placed at various heights. Twenty distinguished male national athletes were recruited and were asked to kick targets at three different heights adjusted according to their body height. A three-dimensional (3D) motion capture system was used to collect kinematic data. Kinematic parameters differences in the side-kick at three different heights were analyzed by using a one-way ANOVA (p < .05). The results revealed significant differences in the peak linear velocities of the pelvis, hip, knee, ankle, and centre of gravity of the foot during the leg-lifting phase (p < .05). Significant differences between heights were noted in the maximum angle of pelvis left tilting and hip abduction in both phases. In addition, the maximum angular velocities of pelvis left tilting and hip internal rotation were only different in the leg-lifting phase. This study found that, to kick at a higher target, athletes increase the linear velocities of their pelvis and all lower extremity joints of attacking leg in the leg-lifting phase; however, they only increase rotational variables on the proximal segment at the peak angle of the pelvis (left tilting) and hip (abduction and internal rotation) in the same phase. As an application in actual competitions, according to the opponent's body height, athletes can adjust both linear and rotational velocities of their proximal segements (pelvis and hip) and deliver into distal segements (knee, ankle, foot) linear velocity to perform accurate and rapid kicks.