{"title":"多种病原体相关分子模式影响山羊血液中收费样受体信号通路基因的转录。","authors":"Kingsley Ekwemalor, Emmanuel Asiamah, Sarah Adjei-Fremah, Eboghoye Eluka-Okoludoh, Bharath Mulakala, Bertha Osei, Mulumebet Worku","doi":"10.1080/10495398.2023.2214189","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS), peptidoglycan (PGN), Polyinosinic-polycytidylic acid (poly I:C), and CpG Oligodeoxynucleotides (ODN) are recognized by Toll-like receptors (TLR). This study aimed to investigate the effect of diverse PAMPs on the transcription of TLR signaling pathway genes in goat blood. Whole blood was collected from 3 female BoerXSpanish goats and treated with the following PAMPs: 10 µg/ml LPS, PGN, CpG ODN (2216), CpG ODN (2006), and 12.5 µg/ml Poly I:C. Blood-treated PBS served as a control. The expression of 84 genes in the human TLR signaling pathway RT2 PCR Array (Qiagen) was evaluated using real-time PCR. Treatment with PBS affected the expression of 74 genes, Poly I:C affected the expression of 40 genes, t ODN 2006 affected the expression of 50 genes, ODN 2216 affected the expression of 52 genes, LPS affected the expression of 49 genes, while PGN affected the expression of 49 genes. Our results show that PAMPs modulated and increased the expression of genes in the TLR signaling pathway. These results highlight important insights into how the host responds to different pathogens and may help design adjuvants for therapeutics and vaccines that target different.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"3729-3738"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse pathogen-associated molecular patterns affect transcription of genes in the toll-like receptor signaling pathway in goat blood.\",\"authors\":\"Kingsley Ekwemalor, Emmanuel Asiamah, Sarah Adjei-Fremah, Eboghoye Eluka-Okoludoh, Bharath Mulakala, Bertha Osei, Mulumebet Worku\",\"doi\":\"10.1080/10495398.2023.2214189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS), peptidoglycan (PGN), Polyinosinic-polycytidylic acid (poly I:C), and CpG Oligodeoxynucleotides (ODN) are recognized by Toll-like receptors (TLR). This study aimed to investigate the effect of diverse PAMPs on the transcription of TLR signaling pathway genes in goat blood. Whole blood was collected from 3 female BoerXSpanish goats and treated with the following PAMPs: 10 µg/ml LPS, PGN, CpG ODN (2216), CpG ODN (2006), and 12.5 µg/ml Poly I:C. Blood-treated PBS served as a control. The expression of 84 genes in the human TLR signaling pathway RT2 PCR Array (Qiagen) was evaluated using real-time PCR. Treatment with PBS affected the expression of 74 genes, Poly I:C affected the expression of 40 genes, t ODN 2006 affected the expression of 50 genes, ODN 2216 affected the expression of 52 genes, LPS affected the expression of 49 genes, while PGN affected the expression of 49 genes. Our results show that PAMPs modulated and increased the expression of genes in the TLR signaling pathway. These results highlight important insights into how the host responds to different pathogens and may help design adjuvants for therapeutics and vaccines that target different.</p>\",\"PeriodicalId\":7836,\"journal\":{\"name\":\"Animal Biotechnology\",\"volume\":\" \",\"pages\":\"3729-3738\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10495398.2023.2214189\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2023.2214189","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Diverse pathogen-associated molecular patterns affect transcription of genes in the toll-like receptor signaling pathway in goat blood.
Pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS), peptidoglycan (PGN), Polyinosinic-polycytidylic acid (poly I:C), and CpG Oligodeoxynucleotides (ODN) are recognized by Toll-like receptors (TLR). This study aimed to investigate the effect of diverse PAMPs on the transcription of TLR signaling pathway genes in goat blood. Whole blood was collected from 3 female BoerXSpanish goats and treated with the following PAMPs: 10 µg/ml LPS, PGN, CpG ODN (2216), CpG ODN (2006), and 12.5 µg/ml Poly I:C. Blood-treated PBS served as a control. The expression of 84 genes in the human TLR signaling pathway RT2 PCR Array (Qiagen) was evaluated using real-time PCR. Treatment with PBS affected the expression of 74 genes, Poly I:C affected the expression of 40 genes, t ODN 2006 affected the expression of 50 genes, ODN 2216 affected the expression of 52 genes, LPS affected the expression of 49 genes, while PGN affected the expression of 49 genes. Our results show that PAMPs modulated and increased the expression of genes in the TLR signaling pathway. These results highlight important insights into how the host responds to different pathogens and may help design adjuvants for therapeutics and vaccines that target different.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes