Niharika Sahu, Sonal Mishra, Minu Kesheri, Swarna Kanchan, Rajeshwar P Sinha
{"title":"利用分子对接研究、ADME和毒性分析鉴定基于蓝藻的抗SARS-CoV-2药物靶点ACE2天然抑制剂","authors":"Niharika Sahu, Sonal Mishra, Minu Kesheri, Swarna Kanchan, Rajeshwar P Sinha","doi":"10.1007/s12291-022-01056-6","DOIUrl":null,"url":null,"abstract":"<p><p>In 2019-2020, the novel \"severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)\" had emerged as the biggest challenge for humanity, causing \"coronavirus disease 19 (COVID-19)\". Scientists around the world have been putting continuous efforts to unfold potential inhibitors of SARS-CoV-2. We have performed computational studies that help us to identify cyanobacterial photoprotective compounds as potential inhibitors against SARS-CoV-2 druggable target human angiotensin-converting enzyme (ACE2), which plays a vital role in the attachment and entry of the virus into the cell. Blocking the receptor-binding domain of ACE2 can prevent the access of the virus into the compartment. A molecular docking study was performed between photoprotective compounds mycosporine-like amino acids, scytonemins and ACE2 protein using AutoDock tools. Among sixteen molecularly docked metabolites, seven compounds were selected with binding energy < 6.8 kcal/mol. Afterwards, drug-likeness and toxicity of the top candidate were predicted using Swiss ADME and Pro Tox-II online servers. All top hits show desirable drug-likeness properties, but toxicity pattern analysis discloses the toxic effect of scytonemin and its derivatives, resulting in the elimination from the screening pipeline. Further molecular interaction study of the rest two ligands, mycosporine-glycine-valine and shinorine with ACE2 was performed using PyMol, Biovia Discovery studio and LigPlot+. Lastly biological activity of both the ligands was predicted by using the PASS online server. Combining the docking score and other studied properties, we believe that mycosporine-glycine-valine and shinorine have potential to be potent inhibitors of ACE2 and can be explored further to use against COVID-19.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 3","pages":"361-373"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255548/pdf/","citationCount":"9","resultStr":"{\"title\":\"Identification of Cyanobacteria-Based Natural Inhibitors Against SARS-CoV-2 Druggable Target ACE2 Using Molecular Docking Study, ADME and Toxicity Analysis.\",\"authors\":\"Niharika Sahu, Sonal Mishra, Minu Kesheri, Swarna Kanchan, Rajeshwar P Sinha\",\"doi\":\"10.1007/s12291-022-01056-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 2019-2020, the novel \\\"severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)\\\" had emerged as the biggest challenge for humanity, causing \\\"coronavirus disease 19 (COVID-19)\\\". Scientists around the world have been putting continuous efforts to unfold potential inhibitors of SARS-CoV-2. We have performed computational studies that help us to identify cyanobacterial photoprotective compounds as potential inhibitors against SARS-CoV-2 druggable target human angiotensin-converting enzyme (ACE2), which plays a vital role in the attachment and entry of the virus into the cell. Blocking the receptor-binding domain of ACE2 can prevent the access of the virus into the compartment. A molecular docking study was performed between photoprotective compounds mycosporine-like amino acids, scytonemins and ACE2 protein using AutoDock tools. Among sixteen molecularly docked metabolites, seven compounds were selected with binding energy < 6.8 kcal/mol. Afterwards, drug-likeness and toxicity of the top candidate were predicted using Swiss ADME and Pro Tox-II online servers. All top hits show desirable drug-likeness properties, but toxicity pattern analysis discloses the toxic effect of scytonemin and its derivatives, resulting in the elimination from the screening pipeline. Further molecular interaction study of the rest two ligands, mycosporine-glycine-valine and shinorine with ACE2 was performed using PyMol, Biovia Discovery studio and LigPlot+. Lastly biological activity of both the ligands was predicted by using the PASS online server. Combining the docking score and other studied properties, we believe that mycosporine-glycine-valine and shinorine have potential to be potent inhibitors of ACE2 and can be explored further to use against COVID-19.</p>\",\"PeriodicalId\":13280,\"journal\":{\"name\":\"Indian Journal of Clinical Biochemistry\",\"volume\":\"38 3\",\"pages\":\"361-373\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255548/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Clinical Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12291-022-01056-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Clinical Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12291-022-01056-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of Cyanobacteria-Based Natural Inhibitors Against SARS-CoV-2 Druggable Target ACE2 Using Molecular Docking Study, ADME and Toxicity Analysis.
In 2019-2020, the novel "severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)" had emerged as the biggest challenge for humanity, causing "coronavirus disease 19 (COVID-19)". Scientists around the world have been putting continuous efforts to unfold potential inhibitors of SARS-CoV-2. We have performed computational studies that help us to identify cyanobacterial photoprotective compounds as potential inhibitors against SARS-CoV-2 druggable target human angiotensin-converting enzyme (ACE2), which plays a vital role in the attachment and entry of the virus into the cell. Blocking the receptor-binding domain of ACE2 can prevent the access of the virus into the compartment. A molecular docking study was performed between photoprotective compounds mycosporine-like amino acids, scytonemins and ACE2 protein using AutoDock tools. Among sixteen molecularly docked metabolites, seven compounds were selected with binding energy < 6.8 kcal/mol. Afterwards, drug-likeness and toxicity of the top candidate were predicted using Swiss ADME and Pro Tox-II online servers. All top hits show desirable drug-likeness properties, but toxicity pattern analysis discloses the toxic effect of scytonemin and its derivatives, resulting in the elimination from the screening pipeline. Further molecular interaction study of the rest two ligands, mycosporine-glycine-valine and shinorine with ACE2 was performed using PyMol, Biovia Discovery studio and LigPlot+. Lastly biological activity of both the ligands was predicted by using the PASS online server. Combining the docking score and other studied properties, we believe that mycosporine-glycine-valine and shinorine have potential to be potent inhibitors of ACE2 and can be explored further to use against COVID-19.
期刊介绍:
The primary mission of the journal is to promote improvement in the health and well-being of community through the development and practice of clinical biochemistry and dissemination of knowledge and recent advances in this discipline among professionals, diagnostics industry, government and non-government organizations. Indian Journal of Clinical Biochemistry (IJCB) publishes peer reviewed articles that contribute to the existing knowledge in all fields of Clinical biochemistry, either experimental or theoretical, particularly deal with the applications of biochemistry, molecular biology, genetics, biotechnology, and immunology to the diagnosis, treatment, monitoring and prevention of human diseases. The articles published also include those covering the analytical and molecular diagnostic techniques, instrumentation, data processing, quality assurance and accreditation aspects of the clinical investigations in which chemistry has played a major role, or laboratory animal studies with biochemical and clinical relevance.