生物进化需要一个紧急的、自组织的原则

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Progress in Biophysics & Molecular Biology Pub Date : 2023-09-01 DOI:10.1016/j.pbiomolbio.2023.06.001
Olen R. Brown , David A. Hullender
{"title":"生物进化需要一个紧急的、自组织的原则","authors":"Olen R. Brown ,&nbsp;David A. Hullender","doi":"10.1016/j.pbiomolbio.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this perspective review, we assess fundamental flaws in Darwinian evolution, including its modern versions. Fixed mutations ‘explain’ microevolution but not macroevolution including speciation events and the origination of all the major body plans of the Cambrian explosion. Complex, multifactorial change is required for speciation events and inevitably requires self-organization beyond what is accomplished by known mechanisms. The assembly of ribosomes and ATP synthase are specific examples. We propose their origin is a model for what is unexplained in biological evolution. Probability of evolution is modeled in Section 9 and values are absurdly improbable. Speciation and higher taxonomic changes become exponentially less probable as the number of required, genetically-based events increase. Also, the power required of the proposed selection mechanism (survival of the fittest) is nil for any biological advance requiring multiple changes, because they regularly occur in multiple generations (different genomes) and would not be selectively conserved by the concept survival of the fittest (a concept ultimately centered on the individual). Thus, survival of the fittest cannot ‘explain’ the origin of the millions of current and </span>extinct species. We also focus on the inadequacies of laboratory chemistry to explain the complex, required biological self-organization seen in cells. We propose that a ‘bioelectromagnetic’ field/principle emerges in living cells. Synthesis by self-organization of massive molecular complexes involves biochemical responses to this emergent field/principle. There are ramifications for philosophy, science, and religion. Physics and mathematics must be more strongly integrated with biology and integration should receive dedicated funding with special emphasis for medical applications; treatment of cancer and genetic diseases are examples.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biological evolution requires an emergent, self-organizing principle\",\"authors\":\"Olen R. Brown ,&nbsp;David A. Hullender\",\"doi\":\"10.1016/j.pbiomolbio.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this perspective review, we assess fundamental flaws in Darwinian evolution, including its modern versions. Fixed mutations ‘explain’ microevolution but not macroevolution including speciation events and the origination of all the major body plans of the Cambrian explosion. Complex, multifactorial change is required for speciation events and inevitably requires self-organization beyond what is accomplished by known mechanisms. The assembly of ribosomes and ATP synthase are specific examples. We propose their origin is a model for what is unexplained in biological evolution. Probability of evolution is modeled in Section 9 and values are absurdly improbable. Speciation and higher taxonomic changes become exponentially less probable as the number of required, genetically-based events increase. Also, the power required of the proposed selection mechanism (survival of the fittest) is nil for any biological advance requiring multiple changes, because they regularly occur in multiple generations (different genomes) and would not be selectively conserved by the concept survival of the fittest (a concept ultimately centered on the individual). Thus, survival of the fittest cannot ‘explain’ the origin of the millions of current and </span>extinct species. We also focus on the inadequacies of laboratory chemistry to explain the complex, required biological self-organization seen in cells. We propose that a ‘bioelectromagnetic’ field/principle emerges in living cells. Synthesis by self-organization of massive molecular complexes involves biochemical responses to this emergent field/principle. There are ramifications for philosophy, science, and religion. Physics and mathematics must be more strongly integrated with biology and integration should receive dedicated funding with special emphasis for medical applications; treatment of cancer and genetic diseases are examples.</p></div>\",\"PeriodicalId\":54554,\"journal\":{\"name\":\"Progress in Biophysics & Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biophysics & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079610723000585\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723000585","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

在这篇观点综述中,我们评估了达尔文进化论的基本缺陷,包括它的现代版本。固定突变“解释”了微观进化,但不能解释宏观进化,包括物种形成事件和寒武纪大爆发所有主体计划的起源。物种形成事件需要复杂的多因素变化,并且不可避免地需要超越已知机制的自组织。核糖体和ATP合成酶的组装是具体的例子。我们认为它们的起源是生物进化中无法解释的模型。进化概率在第9节中进行了建模,其值是荒谬的不可能。随着所需的基于基因的事件数量的增加,形态和更高分类变化的可能性呈指数级降低。此外,对于任何需要多次改变的生物进步,所提出的选择机制(适者生存)所需的力量都是零,因为它们经常发生在多代人(不同的基因组)中,并且不会被适者生存的概念(一个最终以个体为中心的概念)选择性地保守。因此,适者生存并不能“解释”数百万现存和灭绝物种的起源。我们还关注实验室化学的不足之处,以解释细胞中复杂的、所需的生物自组织。我们提出在活细胞中出现“生物电磁场”。大分子复合物的自组织合成涉及对这一新兴领域/原理的生物化学反应。这对哲学、科学和宗教都有影响。物理学和数学必须与生物学更加紧密地结合在一起,并且应获得专门的资金,特别重视医学应用;癌症和遗传性疾病的治疗就是例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biological evolution requires an emergent, self-organizing principle

In this perspective review, we assess fundamental flaws in Darwinian evolution, including its modern versions. Fixed mutations ‘explain’ microevolution but not macroevolution including speciation events and the origination of all the major body plans of the Cambrian explosion. Complex, multifactorial change is required for speciation events and inevitably requires self-organization beyond what is accomplished by known mechanisms. The assembly of ribosomes and ATP synthase are specific examples. We propose their origin is a model for what is unexplained in biological evolution. Probability of evolution is modeled in Section 9 and values are absurdly improbable. Speciation and higher taxonomic changes become exponentially less probable as the number of required, genetically-based events increase. Also, the power required of the proposed selection mechanism (survival of the fittest) is nil for any biological advance requiring multiple changes, because they regularly occur in multiple generations (different genomes) and would not be selectively conserved by the concept survival of the fittest (a concept ultimately centered on the individual). Thus, survival of the fittest cannot ‘explain’ the origin of the millions of current and extinct species. We also focus on the inadequacies of laboratory chemistry to explain the complex, required biological self-organization seen in cells. We propose that a ‘bioelectromagnetic’ field/principle emerges in living cells. Synthesis by self-organization of massive molecular complexes involves biochemical responses to this emergent field/principle. There are ramifications for philosophy, science, and religion. Physics and mathematics must be more strongly integrated with biology and integration should receive dedicated funding with special emphasis for medical applications; treatment of cancer and genetic diseases are examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biophysics & Molecular Biology
Progress in Biophysics & Molecular Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
7.90%
发文量
85
审稿时长
85 days
期刊介绍: Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.
期刊最新文献
A physical perspective on lithium therapy. Editorial Board Computational approaches for modeling and structural design of biological systems: A comprehensive review Recent progress of mechanosensitive mechanism on breast cancer Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1