球面平均扩散MRI数据稀疏非负矩阵分解的组织分割。

Peng Sun, Ye Wu, Geng Chen, Jun Wu, Dinggang Shen, Pew-Thian Yap
{"title":"球面平均扩散MRI数据稀疏非负矩阵分解的组织分割。","authors":"Peng Sun,&nbsp;Ye Wu,&nbsp;Geng Chen,&nbsp;Jun Wu,&nbsp;Dinggang Shen,&nbsp;Pew-Thian Yap","doi":"10.1007/978-3-030-05831-9_6","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a method based on sparse non-negative matrix factorization (NMF) for brain tissue segmentation using diffusion MRI (DMRI) data. Unlike existing NMF-based approaches, in our method NMF is applied to the spherical mean data, computed on a per-shell basis, instead of the original diffusion-weighted images. This is motivated by the fact that the spherical mean is independent of the fiber orientation distribution and is only dependent on tissue microstructure. Applying NMF to the spherical mean data will hence allow tissue signal separation based solely on the microstructural properties, unconfounded by factors such as fiber dispersion and crossing. We show results explaining why applying NMF directly on the diffusion-weighted images fails and why our method is able to yield the expected outcome, producing tissue segmentation with greater accuracy.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"2019 ","pages":"69-76"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-05831-9_6","citationCount":"1","resultStr":"{\"title\":\"Tissue Segmentation Using Sparse Non-negative Matrix Factorization of Spherical Mean Diffusion MRI Data.\",\"authors\":\"Peng Sun,&nbsp;Ye Wu,&nbsp;Geng Chen,&nbsp;Jun Wu,&nbsp;Dinggang Shen,&nbsp;Pew-Thian Yap\",\"doi\":\"10.1007/978-3-030-05831-9_6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we present a method based on sparse non-negative matrix factorization (NMF) for brain tissue segmentation using diffusion MRI (DMRI) data. Unlike existing NMF-based approaches, in our method NMF is applied to the spherical mean data, computed on a per-shell basis, instead of the original diffusion-weighted images. This is motivated by the fact that the spherical mean is independent of the fiber orientation distribution and is only dependent on tissue microstructure. Applying NMF to the spherical mean data will hence allow tissue signal separation based solely on the microstructural properties, unconfounded by factors such as fiber dispersion and crossing. We show results explaining why applying NMF directly on the diffusion-weighted images fails and why our method is able to yield the expected outcome, producing tissue segmentation with greater accuracy.</p>\",\"PeriodicalId\":72661,\"journal\":{\"name\":\"Computational diffusion MRI : MICCAI Workshop\",\"volume\":\"2019 \",\"pages\":\"69-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-030-05831-9_6\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational diffusion MRI : MICCAI Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-05831-9_6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-05831-9_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于稀疏非负矩阵分解(NMF)的弥散磁共振成像(DMRI)脑组织分割方法。与现有的基于NMF的方法不同,在我们的方法中,NMF应用于球形平均数据,以每壳为基础计算,而不是原始的扩散加权图像。这是因为球面平均值与纤维取向分布无关,只取决于组织微观结构。因此,将NMF应用于球面平均数据将允许仅基于微观结构特性的组织信号分离,而不受纤维色散和交叉等因素的影响。我们展示的结果解释了为什么直接在扩散加权图像上应用NMF失败,以及为什么我们的方法能够产生预期的结果,以更高的精度产生组织分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tissue Segmentation Using Sparse Non-negative Matrix Factorization of Spherical Mean Diffusion MRI Data.

In this paper, we present a method based on sparse non-negative matrix factorization (NMF) for brain tissue segmentation using diffusion MRI (DMRI) data. Unlike existing NMF-based approaches, in our method NMF is applied to the spherical mean data, computed on a per-shell basis, instead of the original diffusion-weighted images. This is motivated by the fact that the spherical mean is independent of the fiber orientation distribution and is only dependent on tissue microstructure. Applying NMF to the spherical mean data will hence allow tissue signal separation based solely on the microstructural properties, unconfounded by factors such as fiber dispersion and crossing. We show results explaining why applying NMF directly on the diffusion-weighted images fails and why our method is able to yield the expected outcome, producing tissue segmentation with greater accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI. Automated Mapping of Residual Distortion Severity in Diffusion MRI. Stepwise Stochastic Dictionary Adaptation Improves Microstructure Reconstruction with Orientation Distribution Function Fingerprinting. Computational Diffusion MRI: 13th International Workshop, CDMRI 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1