螺旋体基因组学和动物基因组结构的进化。

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Briefings in Functional Genomics Pub Date : 2023-11-17 DOI:10.1093/bfgp/elad029
Isabel Jiah-Yih Liao, Tsai-Ming Lu, Mu-En Chen, Yi-Jyun Luo
{"title":"螺旋体基因组学和动物基因组结构的进化。","authors":"Isabel Jiah-Yih Liao, Tsai-Ming Lu, Mu-En Chen, Yi-Jyun Luo","doi":"10.1093/bfgp/elad029","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in sequencing technologies have greatly improved our knowledge of phylogenetic relationships and genomic architectures throughout the tree of life. Spiralia, a diverse clade within Protostomia, is essential for understanding the evolutionary history of parasitism, gene conversion, nervous systems and animal body plans. In this review, we focus on the current hypotheses of spiralian phylogeny and investigate the impact of long-read sequencing on the quality of genome assemblies. We examine chromosome-level assemblies to highlight key genomic features that have driven spiralian evolution, including karyotype, synteny and the Hox gene organization. In addition, we show how chromosome rearrangement has influenced spiralian genomic structures. Although spiralian genomes have undergone substantial changes, they exhibit both conserved and lineage-specific features. We recommend increasing sequencing efforts and expanding functional genomics research to deepen insights into spiralian biology.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"498-508"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spiralian genomics and the evolution of animal genome architecture.\",\"authors\":\"Isabel Jiah-Yih Liao, Tsai-Ming Lu, Mu-En Chen, Yi-Jyun Luo\",\"doi\":\"10.1093/bfgp/elad029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent developments in sequencing technologies have greatly improved our knowledge of phylogenetic relationships and genomic architectures throughout the tree of life. Spiralia, a diverse clade within Protostomia, is essential for understanding the evolutionary history of parasitism, gene conversion, nervous systems and animal body plans. In this review, we focus on the current hypotheses of spiralian phylogeny and investigate the impact of long-read sequencing on the quality of genome assemblies. We examine chromosome-level assemblies to highlight key genomic features that have driven spiralian evolution, including karyotype, synteny and the Hox gene organization. In addition, we show how chromosome rearrangement has influenced spiralian genomic structures. Although spiralian genomes have undergone substantial changes, they exhibit both conserved and lineage-specific features. We recommend increasing sequencing efforts and expanding functional genomics research to deepen insights into spiralian biology.</p>\",\"PeriodicalId\":55323,\"journal\":{\"name\":\"Briefings in Functional Genomics\",\"volume\":\" \",\"pages\":\"498-508\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in Functional Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elad029\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad029","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

测序技术的最新发展极大地提高了我们对整个生命之树的系统发育关系和基因组结构的认识。螺旋体是原口虫中一个多样化的分支,对了解寄生、基因转化、神经系统和动物身体结构的进化史至关重要。在这篇综述中,我们重点介绍了目前关于螺旋动物系统发育的假设,并研究了长读测序对基因组组装质量的影响。我们研究了染色体水平的组装,以突出驱动螺旋动物进化的关键基因组特征,包括核型,synteny和Hox基因组织。此外,我们展示了染色体重排如何影响螺旋动物的基因组结构。尽管螺旋动物基因组经历了实质性的变化,但它们同时表现出保守和谱系特异性的特征。我们建议增加测序工作和扩大功能基因组学研究,以加深对螺旋体生物学的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spiralian genomics and the evolution of animal genome architecture.

Recent developments in sequencing technologies have greatly improved our knowledge of phylogenetic relationships and genomic architectures throughout the tree of life. Spiralia, a diverse clade within Protostomia, is essential for understanding the evolutionary history of parasitism, gene conversion, nervous systems and animal body plans. In this review, we focus on the current hypotheses of spiralian phylogeny and investigate the impact of long-read sequencing on the quality of genome assemblies. We examine chromosome-level assemblies to highlight key genomic features that have driven spiralian evolution, including karyotype, synteny and the Hox gene organization. In addition, we show how chromosome rearrangement has influenced spiralian genomic structures. Although spiralian genomes have undergone substantial changes, they exhibit both conserved and lineage-specific features. We recommend increasing sequencing efforts and expanding functional genomics research to deepen insights into spiralian biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
期刊最新文献
Systematic analysis of the transcriptional landscape of melanoma reveals drug-target expression plasticity. Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. Crosstalk between genomic variants and DNA methylation in FLT3 mutant acute myeloid leukemia. Beyond the hype: using AI, big data, wearable devices, and the internet of things for high-throughput livestock phenotyping. Environmental community transcriptomics: strategies and struggles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1