Gα13刺激ric8a的酪氨酸磷酸化。

Q2 Biochemistry, Genetics and Molecular Biology Journal of Molecular Signaling Pub Date : 2015-07-27 DOI:10.5334/1750-2187-10-3
Mingda Yan, Ji Hee Ha, Danny N Dhanasekaran
{"title":"Gα13刺激ric8a的酪氨酸磷酸化。","authors":"Mingda Yan,&nbsp;Ji Hee Ha,&nbsp;Danny N Dhanasekaran","doi":"10.5334/1750-2187-10-3","DOIUrl":null,"url":null,"abstract":"<p><p>The G12 family of heterotrimeric G proteins is defined by their α-subunits, Gα12 and Gα13. These α-subunits regulate cellular homeostasis, cell migration, and oncogenesis in a context-specific manner primarily through their interactions with distinct proteins partners that include diverse effector molecules and scaffold proteins. With a focus on identifying any other novel regulatory protein(s) that can directly interact with Gα13, we subjected Gα13 to tandem affinity purification-coupled mass spectrometric analysis. Our results from such analysis indicate that Gα13 potently interacts with mammalian Ric-8A. Our mass spectrometric analysis data also indicates that Ric-8A, which was tandem affinity purified along with Gα13, is phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion approach, we have defined that the C-terminus of Gα13 containing the guanine-ring interaction site is essential and sufficient for its interaction with Ric-8A. Evaluation of Gα13-specific signaling pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A potentiates Gα13-mediated activation of RhoA, Cdc42, and the downstream p38MAPK. We also establish that the tyrosine phosphorylation of Ric-8A, thus far unidentified, is potently stimulated by Gα13. Our results also indicate that the stimulation of tyrosine-phosphorylation of Ric-8A by Gα13 is partially sensitive to inhibitors of Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that Gα13 promotes the translocation of Ric-8A to plasma membrane and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus, our results demonstrate for the first time that Gα13 stimulates the tyrosine phosphorylation of Ric-8A and Gα13-mediated tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to plasma membrane. </p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831272/pdf/","citationCount":"6","resultStr":"{\"title\":\"Gα13 Stimulates the Tyrosine Phosphorylation of Ric-8A.\",\"authors\":\"Mingda Yan,&nbsp;Ji Hee Ha,&nbsp;Danny N Dhanasekaran\",\"doi\":\"10.5334/1750-2187-10-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The G12 family of heterotrimeric G proteins is defined by their α-subunits, Gα12 and Gα13. These α-subunits regulate cellular homeostasis, cell migration, and oncogenesis in a context-specific manner primarily through their interactions with distinct proteins partners that include diverse effector molecules and scaffold proteins. With a focus on identifying any other novel regulatory protein(s) that can directly interact with Gα13, we subjected Gα13 to tandem affinity purification-coupled mass spectrometric analysis. Our results from such analysis indicate that Gα13 potently interacts with mammalian Ric-8A. Our mass spectrometric analysis data also indicates that Ric-8A, which was tandem affinity purified along with Gα13, is phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion approach, we have defined that the C-terminus of Gα13 containing the guanine-ring interaction site is essential and sufficient for its interaction with Ric-8A. Evaluation of Gα13-specific signaling pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A potentiates Gα13-mediated activation of RhoA, Cdc42, and the downstream p38MAPK. We also establish that the tyrosine phosphorylation of Ric-8A, thus far unidentified, is potently stimulated by Gα13. Our results also indicate that the stimulation of tyrosine-phosphorylation of Ric-8A by Gα13 is partially sensitive to inhibitors of Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that Gα13 promotes the translocation of Ric-8A to plasma membrane and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus, our results demonstrate for the first time that Gα13 stimulates the tyrosine phosphorylation of Ric-8A and Gα13-mediated tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to plasma membrane. </p>\",\"PeriodicalId\":35051,\"journal\":{\"name\":\"Journal of Molecular Signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831272/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Signaling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/1750-2187-10-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/1750-2187-10-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6

摘要

异三聚体G蛋白的G12家族由其α-亚基Gα12和Gα13定义。这些α-亚基主要通过与不同的蛋白质伙伴(包括不同的效应分子和支架蛋白)相互作用,以特定的方式调节细胞稳态、细胞迁移和肿瘤发生。为了鉴定其他能够直接与Gα13相互作用的新型调节蛋白,我们对Gα13进行了串联亲和纯化耦合质谱分析。我们的分析结果表明,g - α13与哺乳动物的Ric-8A有潜在的相互作用。我们的质谱分析数据还表明,与Gα13串联亲和纯化的Ric-8A在Ser-436、Thr-441、Thr-443和Tyr-435位点磷酸化。通过序列缺失的方法,我们发现含有鸟嘌呤环相互作用位点的g - α13的c端是其与Ric-8A相互作用的必要和充分条件。对SKOV3或HeyA8卵巢癌细胞系中g α13特异性信号通路的评估表明,ricc - 8a增强了g α13介导的RhoA、Cdc42和下游p38MAPK的激活。我们还证实,迄今尚未确定的ric8a的酪氨酸磷酸化可能受到g - α13的强烈刺激。我们的研究结果还表明,g - α13刺激ric8a酪氨酸磷酸化对src家族激酶抑制剂(即PP2和SI)部分敏感。此外,我们发现Gα13促进了ric8a向质膜的易位,而这种易位被src抑制剂SI1和PP2减弱。因此,我们的研究结果首次证明了Gα13刺激了ric8a的酪氨酸磷酸化,并且Gα13介导的酪氨酸磷酸化在ric8a向质膜转运中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gα13 Stimulates the Tyrosine Phosphorylation of Ric-8A.

The G12 family of heterotrimeric G proteins is defined by their α-subunits, Gα12 and Gα13. These α-subunits regulate cellular homeostasis, cell migration, and oncogenesis in a context-specific manner primarily through their interactions with distinct proteins partners that include diverse effector molecules and scaffold proteins. With a focus on identifying any other novel regulatory protein(s) that can directly interact with Gα13, we subjected Gα13 to tandem affinity purification-coupled mass spectrometric analysis. Our results from such analysis indicate that Gα13 potently interacts with mammalian Ric-8A. Our mass spectrometric analysis data also indicates that Ric-8A, which was tandem affinity purified along with Gα13, is phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion approach, we have defined that the C-terminus of Gα13 containing the guanine-ring interaction site is essential and sufficient for its interaction with Ric-8A. Evaluation of Gα13-specific signaling pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A potentiates Gα13-mediated activation of RhoA, Cdc42, and the downstream p38MAPK. We also establish that the tyrosine phosphorylation of Ric-8A, thus far unidentified, is potently stimulated by Gα13. Our results also indicate that the stimulation of tyrosine-phosphorylation of Ric-8A by Gα13 is partially sensitive to inhibitors of Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that Gα13 promotes the translocation of Ric-8A to plasma membrane and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus, our results demonstrate for the first time that Gα13 stimulates the tyrosine phosphorylation of Ric-8A and Gα13-mediated tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to plasma membrane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Signaling
Journal of Molecular Signaling Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: Journal of Molecular Signaling is an open access, peer-reviewed online journal that encompasses all aspects of molecular signaling. Molecular signaling is an exponentially growing field that encompasses different molecular aspects of cell signaling underlying normal and pathological conditions. Specifically, the research area of the journal is on the normal or aberrant molecular mechanisms involving receptors, G-proteins, kinases, phosphatases, and transcription factors in regulating cell proliferation, differentiation, apoptosis, and oncogenesis in mammalian cells. This area also covers the genetic and epigenetic changes that modulate the signaling properties of cells and the resultant physiological conditions.
期刊最新文献
Regulation of Tumor Metabolome by Long Non-Coding RNAs Downregulation of Signal Regulatory Protein Alfa 1 in K562 Cells Results in the Aberrant Cell Growth in Low Serum Culture Basal Signalling Through Death Receptor 5 and Caspase 3 Activates p38 Kinase to Regulate Serum Response Factor (SRF)-Mediated MyoD Transcription. ER Stress Activates the TOR Pathway through Atf6. Transcriptional and Post-Translational Targeting of Myocyte Stress Protein 1 (MS1) by the JNK Pathway in Cardiac Myocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1