Egamaria Alacam, Craig K Enders, Han Du, Brian T Keller
{"title":"具有项目级缺失数据的综合分数的因子回归模型。","authors":"Egamaria Alacam, Craig K Enders, Han Du, Brian T Keller","doi":"10.1037/met0000584","DOIUrl":null,"url":null,"abstract":"<p><p>Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score applications. Many studies have investigated this issue, and the near-universal theme is that item-level missing data treatment is superior because it maximizes precision and power. However, item-level missing data handling can be challenging because missing data models become very complex and suffer from the same \"curse of dimensionality\" problem that plagues the estimation of psychometric models. A good deal of recent missing data literature has focused on advancing factored regression specifications that use a sequence of regression models to represent the multivariate distribution of a set of incomplete variables. The purpose of this paper is to describe and evaluate a factored specification for composite scores with incomplete item responses. We used a series of computer simulations to compare the proposed approach to gold standard multiple imputation and latent variable modeling approaches. Overall, the simulation results suggest that this new approach can be very effective, even under extreme conditions where the number of items is very large (or even exceeds) the sample size. A real data analysis illustrates the application of the method using software available on the internet. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A factored regression model for composite scores with item-level missing data.\",\"authors\":\"Egamaria Alacam, Craig K Enders, Han Du, Brian T Keller\",\"doi\":\"10.1037/met0000584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score applications. Many studies have investigated this issue, and the near-universal theme is that item-level missing data treatment is superior because it maximizes precision and power. However, item-level missing data handling can be challenging because missing data models become very complex and suffer from the same \\\"curse of dimensionality\\\" problem that plagues the estimation of psychometric models. A good deal of recent missing data literature has focused on advancing factored regression specifications that use a sequence of regression models to represent the multivariate distribution of a set of incomplete variables. The purpose of this paper is to describe and evaluate a factored specification for composite scores with incomplete item responses. We used a series of computer simulations to compare the proposed approach to gold standard multiple imputation and latent variable modeling approaches. Overall, the simulation results suggest that this new approach can be very effective, even under extreme conditions where the number of items is very large (or even exceeds) the sample size. A real data analysis illustrates the application of the method using software available on the internet. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000584\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000584","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
A factored regression model for composite scores with item-level missing data.
Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score applications. Many studies have investigated this issue, and the near-universal theme is that item-level missing data treatment is superior because it maximizes precision and power. However, item-level missing data handling can be challenging because missing data models become very complex and suffer from the same "curse of dimensionality" problem that plagues the estimation of psychometric models. A good deal of recent missing data literature has focused on advancing factored regression specifications that use a sequence of regression models to represent the multivariate distribution of a set of incomplete variables. The purpose of this paper is to describe and evaluate a factored specification for composite scores with incomplete item responses. We used a series of computer simulations to compare the proposed approach to gold standard multiple imputation and latent variable modeling approaches. Overall, the simulation results suggest that this new approach can be very effective, even under extreme conditions where the number of items is very large (or even exceeds) the sample size. A real data analysis illustrates the application of the method using software available on the internet. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.