{"title":"基于ssvep的高频脑机接口空间编码的子区域组合方案。","authors":"Ruochen Hu, Gege Ming, Yijun Wang, Xiaorong Gao","doi":"10.1088/1741-2552/ace8bd","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>In studying the spatial coding mechanism of visual evoked potentials, it is significant to construct a model that shows the relationship between steady-state visual evoked potential (SSVEP) responses to the local and global visual field stimulation. In order to investigate whether SSVEPs produced by sub-region stimulation can predict that produced by joint region stimulation, a sub-region combination scheme for spatial coding in a high-frequency SSVEP-based brain-computer interface (BCI) is developed innovatively.<i>Approach.</i>An annular visual field is divided equally into eight sub-regions. The 60 Hz visual stimuli in different sub-regions and joint regions are presented separately to participants. The SSVEP produced by the sub-region stimulation is superimposed to simulate the SSVEP produced by the joint region stimulation with different spatial combinations. A four-class spatially-coded BCI paradigm is used to evaluate the simulated classification performance, and the performance ranking of all simulated SSVEPs is obtained. Six representative stimulus patterns from two performance levels and three stimulus areas are applied to the online BCI system for each participant.<i>Main results.</i>The experimental result shows that the proposed scheme can implement a spatially-coded visual BCI system and realize satisfactory performance with imperceptible flicker. Offline analysis indicates that the classification accuracy and information transfer rate (ITR) are 89.69 ± 8.75% and 24.35 ± 7.09 bits min<sup>-1</sup>with 3 s data length under the 3/8 stimulus area. The online BCI system reaches an average classification accuracy of 87.50 ± 9.13% with 3 s data length, resulting in an ITR of 22.48 ± 6.71 bits min<sup>-1</sup>under the 3/8 stimulus area.<i>Significance.</i>This study proves the feasibility of using the sub-region's response to predict the joint region's response. It has the potential to extend to other frequency bands and lays a foundation for future research on more complex spatial coding methods.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"20 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sub-region combination scheme for spatial coding in a high-frequency SSVEP-based BCI.\",\"authors\":\"Ruochen Hu, Gege Ming, Yijun Wang, Xiaorong Gao\",\"doi\":\"10.1088/1741-2552/ace8bd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>In studying the spatial coding mechanism of visual evoked potentials, it is significant to construct a model that shows the relationship between steady-state visual evoked potential (SSVEP) responses to the local and global visual field stimulation. In order to investigate whether SSVEPs produced by sub-region stimulation can predict that produced by joint region stimulation, a sub-region combination scheme for spatial coding in a high-frequency SSVEP-based brain-computer interface (BCI) is developed innovatively.<i>Approach.</i>An annular visual field is divided equally into eight sub-regions. The 60 Hz visual stimuli in different sub-regions and joint regions are presented separately to participants. The SSVEP produced by the sub-region stimulation is superimposed to simulate the SSVEP produced by the joint region stimulation with different spatial combinations. A four-class spatially-coded BCI paradigm is used to evaluate the simulated classification performance, and the performance ranking of all simulated SSVEPs is obtained. Six representative stimulus patterns from two performance levels and three stimulus areas are applied to the online BCI system for each participant.<i>Main results.</i>The experimental result shows that the proposed scheme can implement a spatially-coded visual BCI system and realize satisfactory performance with imperceptible flicker. Offline analysis indicates that the classification accuracy and information transfer rate (ITR) are 89.69 ± 8.75% and 24.35 ± 7.09 bits min<sup>-1</sup>with 3 s data length under the 3/8 stimulus area. The online BCI system reaches an average classification accuracy of 87.50 ± 9.13% with 3 s data length, resulting in an ITR of 22.48 ± 6.71 bits min<sup>-1</sup>under the 3/8 stimulus area.<i>Significance.</i>This study proves the feasibility of using the sub-region's response to predict the joint region's response. It has the potential to extend to other frequency bands and lays a foundation for future research on more complex spatial coding methods.</p>\",\"PeriodicalId\":16753,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ace8bd\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ace8bd","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A sub-region combination scheme for spatial coding in a high-frequency SSVEP-based BCI.
Objective.In studying the spatial coding mechanism of visual evoked potentials, it is significant to construct a model that shows the relationship between steady-state visual evoked potential (SSVEP) responses to the local and global visual field stimulation. In order to investigate whether SSVEPs produced by sub-region stimulation can predict that produced by joint region stimulation, a sub-region combination scheme for spatial coding in a high-frequency SSVEP-based brain-computer interface (BCI) is developed innovatively.Approach.An annular visual field is divided equally into eight sub-regions. The 60 Hz visual stimuli in different sub-regions and joint regions are presented separately to participants. The SSVEP produced by the sub-region stimulation is superimposed to simulate the SSVEP produced by the joint region stimulation with different spatial combinations. A four-class spatially-coded BCI paradigm is used to evaluate the simulated classification performance, and the performance ranking of all simulated SSVEPs is obtained. Six representative stimulus patterns from two performance levels and three stimulus areas are applied to the online BCI system for each participant.Main results.The experimental result shows that the proposed scheme can implement a spatially-coded visual BCI system and realize satisfactory performance with imperceptible flicker. Offline analysis indicates that the classification accuracy and information transfer rate (ITR) are 89.69 ± 8.75% and 24.35 ± 7.09 bits min-1with 3 s data length under the 3/8 stimulus area. The online BCI system reaches an average classification accuracy of 87.50 ± 9.13% with 3 s data length, resulting in an ITR of 22.48 ± 6.71 bits min-1under the 3/8 stimulus area.Significance.This study proves the feasibility of using the sub-region's response to predict the joint region's response. It has the potential to extend to other frequency bands and lays a foundation for future research on more complex spatial coding methods.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.