Alexander M Xu, William Chour, Diana C DeLucia, Yapeng Su, Ana Jimena Pavlovitch-Bedzyk, Rachel Ng, Yusuf Rasheed, Mark M Davis, John K Lee, James R Heath
{"title":"抗原特异性 CDR3 结构域的熵分析确定了不同抗原特异性 CDR3 共享的基本结合基序。","authors":"Alexander M Xu, William Chour, Diana C DeLucia, Yapeng Su, Ana Jimena Pavlovitch-Bedzyk, Rachel Ng, Yusuf Rasheed, Mark M Davis, John K Lee, James R Heath","doi":"10.1016/j.cels.2023.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>Antigen-specific T cell receptor (TCR) sequences can have prognostic, predictive, and therapeutic value, but decoding the specificity of TCR recognition remains challenging. Unlike DNA strands that base pair, TCRs bind to their targets with different orientations and different lengths, which complicates comparisons. We present scanning parametrized by normalized TCR length (SPAN-TCR) to analyze antigen-specific TCR CDR3 sequences and identify patterns driving TCR-pMHC specificity. Using entropic analysis, SPAN-TCR identifies 2-mer motifs that decrease the diversity (entropy) of CDR3s. These motifs are the most common patterns that can predict CDR3 composition, and we identify \"essential\" motifs that decrease entropy in the same CDR3 α or β chain containing the 2-mer, and \"super-essential\" motifs that decrease entropy in both chains. Molecular dynamics analysis further suggests that these motifs may play important roles in binding. We then employ SPAN-TCR to resolve similarities in TCR repertoires against different antigens using public databases of TCR sequences.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"273-284.e5"},"PeriodicalIF":9.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Entropic analysis of antigen-specific CDR3 domains identifies essential binding motifs shared by CDR3s with different antigen specificities.\",\"authors\":\"Alexander M Xu, William Chour, Diana C DeLucia, Yapeng Su, Ana Jimena Pavlovitch-Bedzyk, Rachel Ng, Yusuf Rasheed, Mark M Davis, John K Lee, James R Heath\",\"doi\":\"10.1016/j.cels.2023.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antigen-specific T cell receptor (TCR) sequences can have prognostic, predictive, and therapeutic value, but decoding the specificity of TCR recognition remains challenging. Unlike DNA strands that base pair, TCRs bind to their targets with different orientations and different lengths, which complicates comparisons. We present scanning parametrized by normalized TCR length (SPAN-TCR) to analyze antigen-specific TCR CDR3 sequences and identify patterns driving TCR-pMHC specificity. Using entropic analysis, SPAN-TCR identifies 2-mer motifs that decrease the diversity (entropy) of CDR3s. These motifs are the most common patterns that can predict CDR3 composition, and we identify \\\"essential\\\" motifs that decrease entropy in the same CDR3 α or β chain containing the 2-mer, and \\\"super-essential\\\" motifs that decrease entropy in both chains. Molecular dynamics analysis further suggests that these motifs may play important roles in binding. We then employ SPAN-TCR to resolve similarities in TCR repertoires against different antigens using public databases of TCR sequences.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"14 4\",\"pages\":\"273-284.e5\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.03.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.03.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Entropic analysis of antigen-specific CDR3 domains identifies essential binding motifs shared by CDR3s with different antigen specificities.
Antigen-specific T cell receptor (TCR) sequences can have prognostic, predictive, and therapeutic value, but decoding the specificity of TCR recognition remains challenging. Unlike DNA strands that base pair, TCRs bind to their targets with different orientations and different lengths, which complicates comparisons. We present scanning parametrized by normalized TCR length (SPAN-TCR) to analyze antigen-specific TCR CDR3 sequences and identify patterns driving TCR-pMHC specificity. Using entropic analysis, SPAN-TCR identifies 2-mer motifs that decrease the diversity (entropy) of CDR3s. These motifs are the most common patterns that can predict CDR3 composition, and we identify "essential" motifs that decrease entropy in the same CDR3 α or β chain containing the 2-mer, and "super-essential" motifs that decrease entropy in both chains. Molecular dynamics analysis further suggests that these motifs may play important roles in binding. We then employ SPAN-TCR to resolve similarities in TCR repertoires against different antigens using public databases of TCR sequences.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.