{"title":"呼出冷凝水中的乳酸及其与癌症的关系:挑战,承诺和对数据的呼吁。","authors":"Vera Ruzsanyi, Miklós Péter Kalapos","doi":"10.1088/1752-7163/ace647","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to its connection to cancer metabolism, lactate is a compound that has been a focus of interest in field of cancer biochemistry for more than a century. Exhaled breath volatile organic compounds (VOCs) and condensate analyses can identify and monitor volatile and non-VOCs, respectively, present in exhaled breath to gain information about the health state of an individual. This work aims to take into account the possible use of breath lactate measurements in tumor diagnosis and treatment control, to discuss technical barriers to measurement, and to evaluate directions for the future improvement of this technique. The use of exhaled breath condensate (EBC) lactic acid levels in disorders other than cancer is also discussed in brief. Whilst the use of EBC for the detection of lactate in exhaled breath is a promising tool that could be used to monitor and screen for cancer, the reliability and sensitivity of detection are uncertain, and hence its value in clinical practice is still limited. Currently, lactate present in plasma and EBC can only be used as a biomarker for advanced cancer, and therefore it presently has limited differential diagnostic importance and is rather of prognostic value.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"17 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lactate in exhaled breath condensate and its correlation to cancer: challenges, promises and a call for data.\",\"authors\":\"Vera Ruzsanyi, Miklós Péter Kalapos\",\"doi\":\"10.1088/1752-7163/ace647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Owing to its connection to cancer metabolism, lactate is a compound that has been a focus of interest in field of cancer biochemistry for more than a century. Exhaled breath volatile organic compounds (VOCs) and condensate analyses can identify and monitor volatile and non-VOCs, respectively, present in exhaled breath to gain information about the health state of an individual. This work aims to take into account the possible use of breath lactate measurements in tumor diagnosis and treatment control, to discuss technical barriers to measurement, and to evaluate directions for the future improvement of this technique. The use of exhaled breath condensate (EBC) lactic acid levels in disorders other than cancer is also discussed in brief. Whilst the use of EBC for the detection of lactate in exhaled breath is a promising tool that could be used to monitor and screen for cancer, the reliability and sensitivity of detection are uncertain, and hence its value in clinical practice is still limited. Currently, lactate present in plasma and EBC can only be used as a biomarker for advanced cancer, and therefore it presently has limited differential diagnostic importance and is rather of prognostic value.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ace647\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ace647","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Lactate in exhaled breath condensate and its correlation to cancer: challenges, promises and a call for data.
Owing to its connection to cancer metabolism, lactate is a compound that has been a focus of interest in field of cancer biochemistry for more than a century. Exhaled breath volatile organic compounds (VOCs) and condensate analyses can identify and monitor volatile and non-VOCs, respectively, present in exhaled breath to gain information about the health state of an individual. This work aims to take into account the possible use of breath lactate measurements in tumor diagnosis and treatment control, to discuss technical barriers to measurement, and to evaluate directions for the future improvement of this technique. The use of exhaled breath condensate (EBC) lactic acid levels in disorders other than cancer is also discussed in brief. Whilst the use of EBC for the detection of lactate in exhaled breath is a promising tool that could be used to monitor and screen for cancer, the reliability and sensitivity of detection are uncertain, and hence its value in clinical practice is still limited. Currently, lactate present in plasma and EBC can only be used as a biomarker for advanced cancer, and therefore it presently has limited differential diagnostic importance and is rather of prognostic value.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.