Jian Hong, Yun Shi, Jing Chen, Ma Mi, Qingjia Ren, Yanzhou Zhang, Min Shen, Jing Bu, Yijun Kang
{"title":"魔芋葡甘露聚糖通过增强小鼠腹股沟白色脂肪组织β-肾上腺素能介导的产热作用来减轻高脂肪饮食性肥胖。","authors":"Jian Hong, Yun Shi, Jing Chen, Ma Mi, Qingjia Ren, Yanzhou Zhang, Min Shen, Jing Bu, Yijun Kang","doi":"10.1007/s10719-023-10131-w","DOIUrl":null,"url":null,"abstract":"<p><p>Konjac glucomannan (KGM) has been reported to prevent high-fat diet-induced obesity, and we study investigated whether dietary supplementation with KGM can prevent obesity by increasing energy expenditure in inguinal white adipose tissue (iWAT) of high-fat diet (HF) -fed mice. Weaned mice fed the control diet (Con), HF, or HF plus KGM (8%, w/w, HFK) were divided into three groups. The results showed that 10-week supplementation with KGM significantly reduced partial adipose tissue weight and body weight, and improved glucose tolerance. Compared to the HF group, plasma lipid concentrations in the HFK group were greatly decreased to the control level. Moreover, transcriptomic research has shown that genes that are mainly associated with energy and lipid metabolism are significantly altered in iWAT. Mechanistically, KGM stimulated thermogenesis by promoting the expression of uncoupling protein-1 (UCP1) and the β3-adrenergic receptor (ADR3β). Taken together, our results suggest that dietary supplementation with konjac glucomannan can effectively alleviate obesity induced by a high-fat diet by activating ADR3β-mediated iWAT thermogenesis. Dietary supplementation with KGM can effectively alleviate high fat diet- induced obesity mice by via activating ADR3β-mediated thermogenesis of iWAT.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"575-586"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice.\",\"authors\":\"Jian Hong, Yun Shi, Jing Chen, Ma Mi, Qingjia Ren, Yanzhou Zhang, Min Shen, Jing Bu, Yijun Kang\",\"doi\":\"10.1007/s10719-023-10131-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Konjac glucomannan (KGM) has been reported to prevent high-fat diet-induced obesity, and we study investigated whether dietary supplementation with KGM can prevent obesity by increasing energy expenditure in inguinal white adipose tissue (iWAT) of high-fat diet (HF) -fed mice. Weaned mice fed the control diet (Con), HF, or HF plus KGM (8%, w/w, HFK) were divided into three groups. The results showed that 10-week supplementation with KGM significantly reduced partial adipose tissue weight and body weight, and improved glucose tolerance. Compared to the HF group, plasma lipid concentrations in the HFK group were greatly decreased to the control level. Moreover, transcriptomic research has shown that genes that are mainly associated with energy and lipid metabolism are significantly altered in iWAT. Mechanistically, KGM stimulated thermogenesis by promoting the expression of uncoupling protein-1 (UCP1) and the β3-adrenergic receptor (ADR3β). Taken together, our results suggest that dietary supplementation with konjac glucomannan can effectively alleviate obesity induced by a high-fat diet by activating ADR3β-mediated iWAT thermogenesis. Dietary supplementation with KGM can effectively alleviate high fat diet- induced obesity mice by via activating ADR3β-mediated thermogenesis of iWAT.</p>\",\"PeriodicalId\":12762,\"journal\":{\"name\":\"Glycoconjugate Journal\",\"volume\":\" \",\"pages\":\"575-586\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycoconjugate Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10719-023-10131-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-023-10131-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice.
Konjac glucomannan (KGM) has been reported to prevent high-fat diet-induced obesity, and we study investigated whether dietary supplementation with KGM can prevent obesity by increasing energy expenditure in inguinal white adipose tissue (iWAT) of high-fat diet (HF) -fed mice. Weaned mice fed the control diet (Con), HF, or HF plus KGM (8%, w/w, HFK) were divided into three groups. The results showed that 10-week supplementation with KGM significantly reduced partial adipose tissue weight and body weight, and improved glucose tolerance. Compared to the HF group, plasma lipid concentrations in the HFK group were greatly decreased to the control level. Moreover, transcriptomic research has shown that genes that are mainly associated with energy and lipid metabolism are significantly altered in iWAT. Mechanistically, KGM stimulated thermogenesis by promoting the expression of uncoupling protein-1 (UCP1) and the β3-adrenergic receptor (ADR3β). Taken together, our results suggest that dietary supplementation with konjac glucomannan can effectively alleviate obesity induced by a high-fat diet by activating ADR3β-mediated iWAT thermogenesis. Dietary supplementation with KGM can effectively alleviate high fat diet- induced obesity mice by via activating ADR3β-mediated thermogenesis of iWAT.
期刊介绍:
Glycoconjugate Journal publishes articles and reviews on all areas concerned with:
function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics.
Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.