利用分子亚结构嵌入表征发现NDM-1抑制剂。

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2023-06-01 DOI:10.1515/jib-2022-0050
Thomas Papastergiou, Jérôme Azé, Sandra Bringay, Maxime Louet, Pascal Poncelet, Miyanou Rosales-Hurtado, Yen Vo-Hoang, Patricia Licznar-Fajardo, Jean-Denis Docquier, Laurent Gavara
{"title":"利用分子亚结构嵌入表征发现NDM-1抑制剂。","authors":"Thomas Papastergiou,&nbsp;Jérôme Azé,&nbsp;Sandra Bringay,&nbsp;Maxime Louet,&nbsp;Pascal Poncelet,&nbsp;Miyanou Rosales-Hurtado,&nbsp;Yen Vo-Hoang,&nbsp;Patricia Licznar-Fajardo,&nbsp;Jean-Denis Docquier,&nbsp;Laurent Gavara","doi":"10.1515/jib-2022-0050","DOIUrl":null,"url":null,"abstract":"<p><p>NDM-1 (New-Delhi-Metallo-β-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties and inconsistencies. We define the activity classification problem in terms of Multiple Instance Learning, employing embeddings corresponding to molecular substructures and present an ensemble ranking and classification framework, relaying on a k-fold Cross Validation method employing a per fold hyper-parameter optimization procedure, showing promising generalization ability. The MIL paradigm displayed an improvement up to 45.7 %, in terms of Balanced Accuracy, in comparison to the classical Machine Learning paradigm. Moreover, we investigate different compact molecular representations, based on atomic or bi-atomic substructures. Finally, we scanned the Drugbank for strongly active compounds and we present the top-15 ranked compounds.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389050/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovering NDM-1 inhibitors using molecular substructure embeddings representations.\",\"authors\":\"Thomas Papastergiou,&nbsp;Jérôme Azé,&nbsp;Sandra Bringay,&nbsp;Maxime Louet,&nbsp;Pascal Poncelet,&nbsp;Miyanou Rosales-Hurtado,&nbsp;Yen Vo-Hoang,&nbsp;Patricia Licznar-Fajardo,&nbsp;Jean-Denis Docquier,&nbsp;Laurent Gavara\",\"doi\":\"10.1515/jib-2022-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NDM-1 (New-Delhi-Metallo-β-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties and inconsistencies. We define the activity classification problem in terms of Multiple Instance Learning, employing embeddings corresponding to molecular substructures and present an ensemble ranking and classification framework, relaying on a k-fold Cross Validation method employing a per fold hyper-parameter optimization procedure, showing promising generalization ability. The MIL paradigm displayed an improvement up to 45.7 %, in terms of Balanced Accuracy, in comparison to the classical Machine Learning paradigm. Moreover, we investigate different compact molecular representations, based on atomic or bi-atomic substructures. Finally, we scanned the Drugbank for strongly active compounds and we present the top-15 ranked compounds.</p>\",\"PeriodicalId\":53625,\"journal\":{\"name\":\"Journal of Integrative Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389050/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jib-2022-0050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2022-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

NDM-1 (new - delhi - metallic -β-lactamase-1)是一种由细菌产生的酶,与细菌对几乎所有已知抗生素的耐药性有关。在这项研究中,我们提供了一个新的,精心策划的NDM-1生物活性数据库,以及一套统一的规则来管理不同的活性特性和不一致性。我们从多实例学习的角度定义了活动分类问题,采用与分子子结构相对应的嵌入,并提出了一个集成排序和分类框架,依赖于采用每层超参数优化过程的k-fold交叉验证方法,显示出良好的泛化能力。与经典机器学习范式相比,MIL范式在平衡精度方面的提高高达45.7 %。此外,我们还研究了基于原子或双原子亚结构的不同紧凑分子表征。最后,我们扫描了Drugbank中的强活性化合物,并给出了排名前15位的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering NDM-1 inhibitors using molecular substructure embeddings representations.

NDM-1 (New-Delhi-Metallo-β-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties and inconsistencies. We define the activity classification problem in terms of Multiple Instance Learning, employing embeddings corresponding to molecular substructures and present an ensemble ranking and classification framework, relaying on a k-fold Cross Validation method employing a per fold hyper-parameter optimization procedure, showing promising generalization ability. The MIL paradigm displayed an improvement up to 45.7 %, in terms of Balanced Accuracy, in comparison to the classical Machine Learning paradigm. Moreover, we investigate different compact molecular representations, based on atomic or bi-atomic substructures. Finally, we scanned the Drugbank for strongly active compounds and we present the top-15 ranked compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
A roadmap for a middleware as a federation service for integrative data retrieval of agricultural data. International symposium on integrative bioinformatics 2024 - editorial. The potential of Mitragyna speciosa leaves as a natural source of antioxidants for disease prevention. MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. Leonhard Med, a trusted research environment for processing sensitive research data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1