Jingshuang Li, Hui Wang, Lili Zhang, Ni An, Wan Ni, Quanqi Gao, Yang Yu
{"title":"辣椒素通过MAPK和NF-κB信号通路影响巨噬细胞的抗炎活性。","authors":"Jingshuang Li, Hui Wang, Lili Zhang, Ni An, Wan Ni, Quanqi Gao, Yang Yu","doi":"10.1024/0300-9831/a000721","DOIUrl":null,"url":null,"abstract":"<p><p><b></b> Capsaicin, the main constituent in chili, is an extremely spicy vanillin alkaloid and is found in several <i>Capsicum</i> species in China. Traditionally, it has been used to treat inflammatory diseases such as allergic rhinitis, neuralgia after shingles, refractory female urethral syndrome, spontaneous recalcitrant anal pruritus, and solid tumors. Constant stimulation of the body by inflammatory factors can lead to chronic inflammation. Capsaicin possesses anti-inflammatory activity; however, the underlying mechanism is unknown. We investigated the effect of capsaicin on the secretion of macrophage inflammatory factors in a lipopolysaccharide-induced inflammation model using 56 healthy, SPF grade, BALB/c mice. To this end, mice peritoneal macrophages were isolated and stimulated with lipopolysaccharide (1 μg/mL) and capsaicin (25, 50, 75, or 100 μg/mL) for 24 h. At all concentrations tested, capsaicin significantly promoted the phagocytosis of neutral red dye by macrophages. Furthermore, the gene expression and secretion of inflammatory cytokines significantly increased after induction with lipopolysaccharide (P<0.01); the interleukin (IL)-6 level was 204 μg/mL, tumor necrosis factor (TNF)-α level was 860 μg/mL, and nitric oxide (NO) level was 19.8 μg/mL. However, the treatment with capsaicin reduced their levels (P<0.01) and protein expression of lipopolysaccharide-induced extracellular signal-related kinase 1/2 and p65 (P<0.05). Overall, capsaicin reduced the secretion of inflammatory cytokines (P<0.01), interleukins, TNF-α (P<0.01), and NO by inhibiting the nuclear factor-kappa B and microtubule-associated protein kinase signaling pathways, and thereby reduced lipopolysaccharide-induced inflammatory response in macrophages.</p>","PeriodicalId":13884,"journal":{"name":"International Journal for Vitamin and Nutrition Research","volume":"93 4","pages":"289-297"},"PeriodicalIF":2.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Capsaicin affects macrophage anti-inflammatory activity via the MAPK and NF-κB signaling pathways.\",\"authors\":\"Jingshuang Li, Hui Wang, Lili Zhang, Ni An, Wan Ni, Quanqi Gao, Yang Yu\",\"doi\":\"10.1024/0300-9831/a000721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b></b> Capsaicin, the main constituent in chili, is an extremely spicy vanillin alkaloid and is found in several <i>Capsicum</i> species in China. Traditionally, it has been used to treat inflammatory diseases such as allergic rhinitis, neuralgia after shingles, refractory female urethral syndrome, spontaneous recalcitrant anal pruritus, and solid tumors. Constant stimulation of the body by inflammatory factors can lead to chronic inflammation. Capsaicin possesses anti-inflammatory activity; however, the underlying mechanism is unknown. We investigated the effect of capsaicin on the secretion of macrophage inflammatory factors in a lipopolysaccharide-induced inflammation model using 56 healthy, SPF grade, BALB/c mice. To this end, mice peritoneal macrophages were isolated and stimulated with lipopolysaccharide (1 μg/mL) and capsaicin (25, 50, 75, or 100 μg/mL) for 24 h. At all concentrations tested, capsaicin significantly promoted the phagocytosis of neutral red dye by macrophages. Furthermore, the gene expression and secretion of inflammatory cytokines significantly increased after induction with lipopolysaccharide (P<0.01); the interleukin (IL)-6 level was 204 μg/mL, tumor necrosis factor (TNF)-α level was 860 μg/mL, and nitric oxide (NO) level was 19.8 μg/mL. However, the treatment with capsaicin reduced their levels (P<0.01) and protein expression of lipopolysaccharide-induced extracellular signal-related kinase 1/2 and p65 (P<0.05). Overall, capsaicin reduced the secretion of inflammatory cytokines (P<0.01), interleukins, TNF-α (P<0.01), and NO by inhibiting the nuclear factor-kappa B and microtubule-associated protein kinase signaling pathways, and thereby reduced lipopolysaccharide-induced inflammatory response in macrophages.</p>\",\"PeriodicalId\":13884,\"journal\":{\"name\":\"International Journal for Vitamin and Nutrition Research\",\"volume\":\"93 4\",\"pages\":\"289-297\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Vitamin and Nutrition Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1024/0300-9831/a000721\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Vitamin and Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1024/0300-9831/a000721","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Capsaicin affects macrophage anti-inflammatory activity via the MAPK and NF-κB signaling pathways.
Capsaicin, the main constituent in chili, is an extremely spicy vanillin alkaloid and is found in several Capsicum species in China. Traditionally, it has been used to treat inflammatory diseases such as allergic rhinitis, neuralgia after shingles, refractory female urethral syndrome, spontaneous recalcitrant anal pruritus, and solid tumors. Constant stimulation of the body by inflammatory factors can lead to chronic inflammation. Capsaicin possesses anti-inflammatory activity; however, the underlying mechanism is unknown. We investigated the effect of capsaicin on the secretion of macrophage inflammatory factors in a lipopolysaccharide-induced inflammation model using 56 healthy, SPF grade, BALB/c mice. To this end, mice peritoneal macrophages were isolated and stimulated with lipopolysaccharide (1 μg/mL) and capsaicin (25, 50, 75, or 100 μg/mL) for 24 h. At all concentrations tested, capsaicin significantly promoted the phagocytosis of neutral red dye by macrophages. Furthermore, the gene expression and secretion of inflammatory cytokines significantly increased after induction with lipopolysaccharide (P<0.01); the interleukin (IL)-6 level was 204 μg/mL, tumor necrosis factor (TNF)-α level was 860 μg/mL, and nitric oxide (NO) level was 19.8 μg/mL. However, the treatment with capsaicin reduced their levels (P<0.01) and protein expression of lipopolysaccharide-induced extracellular signal-related kinase 1/2 and p65 (P<0.05). Overall, capsaicin reduced the secretion of inflammatory cytokines (P<0.01), interleukins, TNF-α (P<0.01), and NO by inhibiting the nuclear factor-kappa B and microtubule-associated protein kinase signaling pathways, and thereby reduced lipopolysaccharide-induced inflammatory response in macrophages.
期刊介绍:
Since 1930 this journal has provided an important international forum for scientific advances in the study of nutrition and vitamins. Widely read by academicians as well as scientists working in major governmental and corporate laboratories throughout the world, this publication presents work dealing with basic as well as applied topics in the field of micronutrients, macronutrients, and non-nutrients such as secondary plant compounds.
The editorial and advisory boards include many of the leading persons currently working in this area.
The journal is of particular interest to:
- Nutritionists
- Vitaminologists
- Biochemists
- Physicians
- Engineers of human and animal nutrition
- Food scientists